Separation Efficiency of Water/Oil Mixtures by Hydrophilic and Oleophobic Membranes Based on Stainless Steel Meshes with Openings of Various Sizes
DOI:
https://doi.org/10.18321/ectj721Keywords:
membranes, oleophobicity, separation, mesh, dip-coatingAbstract
This article is focused on development of hydrophilic and oleophobic composition which serves as a coating for substrate presented by stainless steel meshes with different sizes of their openings. Membranes obtained by dip-coating method are hydrophilic and oleophobic and this may be applied for efficient separation of organic liquids and water by simple and inexpensive gravitational separation. Investigations presented in the article show that the size of openings of meshes influence on the formation of hydrophilicity and oleophobicity of membrane, as well as the nature of used polymers, which serve as a coating, since membranes based on 400 mesh coated with Poly(diallyldimethylammonium chloride) (PDDA)/ pentadecafluorooctanoic acid (PFOA)/SiO2 demonstrate different wettability in regard to organic liquids of different densities. In particular, membrane based on mesh 400 coated with PDDA/PFOA/SiO2 exhibits strong oleophobicity to less dense non-polar organic solvents – kerosene, which does not penetrate the membrane, while more dense liquids, such as vacuum pump oil, are able to penetrate it, but the rate of penetration is rather slow, 10 ml per 21 min. Obtaining of membranes with uniform coating by hydrophilic-oleophobic compositions without clogging of their openings and creation of openings of required sizes for a particular case is also a subject of study of this article.
References
(1). L. Jiang, Z. Tang, R.M. Clinton, D.W. Hess, V. Breedveld, Cellulose 23 (2016) 3885–3899. Crossref
(2). L. Feng, Z.Y. Zhang, Z.H. Mai, Y.M. Ma, B.Q. Liu, L. Jiang, D.B. Zhu, Angew. Chem. Int. Ed. 43 (2004) 2012–2014. Crossref
(3). T.T. Lim, X.F. Huang, Chemosphere 66 (2007) 955–963. Crossref
(4). Y.Z. Cao, X.Y. Zhang, L. Tao, K. Li, Z.X. Xue, L. Feng, Y. Wei, ACS Appl. Mater. Interf. 5 (2013) 4438–4442. Crossref
(5). L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang and D. Zhu, Angew. Chem. Int. Ed. 116 (2004) 2046–2048. Crossref
(6). X. Huang, T.T. Lim, Desalination 190 (2006) 295–307. Crossref
(7). F.R. Sultanov, B. Bakbolat, Z.A. Mansurov, Rabi Ebrahim, Ch. Daulbayev, A.A. Urazgalieva, M.I. Tulepov, Euras. Chem. Tech. J. 19 (2) (2017) 127–132. Crossref
(8). F. Sultanov, B. Bakbolat, Ch. Daulbaev, A. Urazgalieva, Z. Azizov, Z. Mansurov, M. Tulepov, S.S. Pei, J. Eng. Phys. Thermophys. 90 (2017) 826–830. Crossref
(9). H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Adv. Mater. 25 (2013) 2219–2223. Crossref
(10). G.T. Smagulova, S. Kim, N.G. Prikhod’ko, B.T. Lesbayev, A.V. Mironenko, A.A. Zakhidov, Z.A. Mansurov, Int. J Self-Propag. High-Temp. Synth. 25 (2016) 173–176. Crossref
(11). Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, Adv. Mater. 23 (2011) 4270– 4273. Crossref
(12). R.C.B. Lemons, E.B. de Silva, A. dos Santos, R.C.L. Guimaraes, B.M.S. Ferreira, R.A. Guarnieri, C. Dariva, E. Franceschi, A.F. Santos and M. Fortung, Energy Fuels 24 (2010) 4439– 4444. Crossref
(13). W.B. Zhang, Y.Z. Zhu, X. Liu, D. Wang, J.Y. Li, L. Jiang, J. Jin, Angew. Chem. Int. Ed. 53 (2014) 856–860. Crossref
(14). M.H. Tai, J. Juay, D.D. Sun, J.O. Leckie, Sep. Purif. Technol. 156 (2015) 952–960. Crossref
(15). P. Patel, C.K. Choi, D.D. Meng, JALA 15 (2010) 114–119. Crossref
(16). S.J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente, A. Zettl, J.M.J. Frechet, J. Am. Chem. Soc. 130 (2008) 4238–4239. Crossref
(17). J.K. Yuan, X.G. Liu, O. Akbulut, J.Q. Hu, S.L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 3 (2008) 332–336. Crossref
(18). N.R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Nat. Nanotechnol. 2 (2007) 354–357. Crossref
(19). M. Jin, J. Wang, X. Yao, M. Liao, Y. Zhao, L. Jiang, Adv. Mater. 23 (2011) 2861–2864. Crossref
(20). D. Zahner, J. Abagat, F. Svec, J.M.J. Frechet, P.A. Levkin, Adv. Mater. 23 (2011) 3030–3034. Crossref
(21). L. Chen, M. Liu, H. Bai, P. Chen, F. Xia, D. Han, L. Jiang, J. Am. Chem. Soc.131 (2009) 10467–10472. Crossref
(22). P.S. Brown, O. Atkinson, J.P.S. Badyal, ACS Appl. Mater. Interf. 6 (2014) 7504–7511. Crossref
(23). J. Yang, L.T. Yin, H. Tang, H.J. Song, X.N. Gao, K. Liang, C.S. Li, Chem. Eng. J. 268 (2015) 245–250. Crossref
(24). X.Y. Zhu, W.T. Tu, K.H. Wee, R.B. Bai, J. Membr. Sci. 466 (2014) 36–44. Crossref
(25). R.A. Lampitt, J.M. Crowther, J.P.S. Badyal, J. Phys. Chem. B. 104 (2000) 10329–10331. Crossref
(26). H. Sawada, H. Yoshioka, T. Kawase, H. Takahashi, A. Abe, R. Ohashi, J. Appl. Polym. Sci. 98 (2005) 169–177. Crossref
(27). J.A. Howarter, J.P. Youngblood, Adv. Mater. 19 (2009) 3838–3843. Crossref
(28). S. Turri, R. Valsecchi, M. Vigano, M. Levi, Polym. Bull. 63 (2009) 235–243. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.