Soot and Nanomaterials Formation in Flame
DOI:
https://doi.org/10.18321/ectj181Keywords:
soot, nanomaterials, fullerene, graphene, hydrophobicAbstract
The seventieth anniversary of Professor Jürgen Warnatz is an important event for the scientific community of investigators of chemical kinetics and computation of combustion. His brilliant research in the field of combustion, particularly in the chemical kinetics reactions should be noted. His manuscript «Combustion» with co-authors is a handbook for specialists in the field of combustion and under my supervision was translated to Kazakh. Professor J.Warnatz contributed much to the development of combustion processes modeling and education of scientists from various countries, including Kazakhstan. The general scheme of conversion of hydrocarbon fuels with new experimental data on the formation of fullerenes and graphenes, taking into account the pressure effect is proposed for the fuel-rich flames. It is shown that the formation of fullerenes is important to the corresponding spatial orientation of PAH, possible at low pressures. The formation of hydrophobic soot surface on silicon and nickel substrates during combustion of propane-oxygen flame was studied. It is stated that the hydrophobic properties are due to the presence of soot particles in the form of nanobeads.
References
[2]. K.H. Homann and H.G. Wagner, Some aspect of soot formation, in: J. Ray Bawen (Ed.), Dynamics of Exothermicity (Combust. Sc. Techol. Book Series, Vol. 2), Carbon and Breach Publishers (1996), P. 151–184.
[3]. M. Frenklach, H. Wang. Detailed mechanism and modeling of soot particle formation // Soot formation in Combustion. Springer-Verlag, Berlin, Heidelberg. 1994. P. 165–192.
[4]. H. Bockhorn (ed). Soot formation in Combustion. Springer-Verlag, Berlin, Heidelberg. 1994. P.4.
[5]. W. Kratshcmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature, 347 (1990) 354–358.
[6]. J.B. Howard, J.T. McKinnon, Y. Makarovsky, et. al. Prepr. Pap. Am. Chem. Soc. Div. Fuel. Chem. 36 (3) (1991) 1022–1025.
[7]. J.B. Howard. Proc. Combust. Inst. 24 (1992) 933–946.
[8]. S. Iijima, Nature 354 (1991) 56–58.
[9]. М.R. Falvo, R.М. Taylor, А. Helser et. al. Nature 397 (1999) 236–238.
[10]. W. Merchan-Merchan, A.V. Saveliev, L. Kennedy, W.C. Jimenez, Prog. Energy Combust. Sci. 36 (2010) 696–727.
[11]. S. Sen, I.K. Puri, Nanotechnology 15 (3) (2004) 264–268.
[12]. Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, H. Yan, Appl. Surf. Sci. 253 (5) (2006) 2690–2694.
[13]. М. Nazhipkyzy, B.T. Lesbayev, Z.A. Mansurov, N.G. Prikhodko, I.K. Puri. Synthesis of superhydrophobic carbon surface during combustion of hydrocarbons // World (Int.) Conf. on Carbon for Energy Storage / Conversion and Environment Protection «CESEP 2011»: – Vichy (France), 2011. – P. 154.
[14]. K.S. Novoselov, A.K. Geim, S.V. Dubonos et al. Physica E 12 (2002) 244–247.
[15]. K.S. Novoselov, A.K. Geim, S.V. Dubonos et al. Nature 426 (2003) 812–16.
[16]. N.G. Prikhodko, B.T. Lesbaev, M. Auyelkhankyzy, Z.A. Mansurov, Rus. J. of Phys. Chem. B, 8 (1) (2014) 61–64.
[17]. J.B. Howard, A.L. Lafleur and other, Carbon, 30 (1998) 1183–1201.
[18]. H. Wang. Pros. Combust. Inst. 33 (2011) 41–67.
[19]. J.Y.W. Lai, P. Elvati, A.Violi. Phys. Chem. Phys., 16 (2014) P.7969.
[20]. S. Naha, S. Sen, A.K. De, and I.K. Puri, Proc. Combust. Inst., 31 (2) (2007) 1821–1829.
[21]. P. Gerhardt, S. Loffler and K.H. Homann, Proc. 22nd Int. Symp. Combust., The Combustion Inst., Pittsburgh (1988) 395-401.
[22]. J.B. Howard, Fullerenes formation in flames, 24th Symp. (Int.) Combust., The Combustion Inst., Pittsburgh (1992), pp. 933–946.
[23]. H. Richter, A.J. Labrocca, W.J. Grieco, K. Taghizadeh, A.L. Lafleur, and J.B. Howard, J. Phys. Chem. B, 101 (1997) 1556–1560.
[24]. W.J. Grieco, J.B. Howard, L. C. Rainey, and J. B. Van der Sande, Carbon, 38 (2000) 597–614.
[25]. M. Frenklach and L.B. Ebert, J. Phys. Chem., 92 (1988) 561–563.
[26]. A.L. Lafleur, J.B. Howard, J.A. Marr, and T. Yadav, J. Phys. Chem., 97 (1993) 13539–13543.
[27]. C. JЁager, F. Huisken, Jansa I. Lamas, Th. Henning. Astrophys., 696 (2009) 706–712.
[28]. J.B. Howard, 24th Symp. (Int.) Combust. (1992), pp. 933–946.
[29]. W.J. Grieco, A.L. Lafleur, K.C. Swallow, et al. Symp. (Int.) Combust. 27 (2) (1998) 1669–1675.
[30]. Z. Li, H. Zhu, D. Xie, et al. Chem. Commun., 47 (2011) 3520-3522.
[31]. R. Whitesides and M. Frenklach. J. Phys. Chem. A, 114 (2010) 689–703.
[32]. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature 318 (1985) 162-163.
[33]. J. Ahrens, M. Bachmann, Th. Baum, J. Griesheimer, R. Kovacs, P. WeilmЁunster, K.-H. Homann, Int. J. Mass Spectrom. Ion Proc. 138 (1994) P.133–148.
[34]. Z.A. Mansurov. Producing Nanomaterials in Combustion. Combustion, Explosion, and Shock Waves 2012; 48 (5):561–569.
[35]. Z.A. Mansurov, N.G. Prikhodko, T.T. Mashan, B.T. Lesbaev, Chem. Physics, 25 Vol. 10 (2006) 18–22.
[36]. Z.A. Mansurov, N.G. Prikhodko, B.T. Lesbaev, and T.T. Mashan, Proc. 31st Symp. (Int.) Combust., Heidelberg (2006), P. 164.
[37]. Z.A. Mansurov, T.A. Shabanova, V.L. Levin, and N.G. Prikhod’ko, A novel characteristic of a C60–C70- fullerene containing substance (according to electronic-microscopy data), Vestn. KazNU, Ser. Khimicheskaya, 39 (3) (2005) 444–448 (in russian).
[38]. W. Merchan-Merchan, A.V. Saveliev, L.A. Kennedy. Carbon 42 (3) (2004) 599–608.
[39]. Z.A. Mansurov. Adv. Mater. Res. 486 (2012) 134–139.
[40]. G.W. Lee, J. Jurng, and J. Hwang, J. Combust. Flame, 139 (2004) 167–175.
[41]. S. Naha and I.K. Puri, J. Phys. D: Appl. Phys., 41, No. 065304, 6 (2008).
[42]. S. Naha, S. Sen, and I.K. Puri, J. Carbon, 45 (8) (2007) 1702–1706.
[43]. A. Levesque, V.T. Binh, V. Semet, D. Guillot, R.Y. Fillit, M.D. Brookes, T.P. Nguyen. Thin Solid Films. 464-465 (2004) 308–314.
[44]. S. Naha, S. Sen, I.K. Puri. Carbon 45 (2007)1696–1716.
[45]. Z.A. Mansurov. Journal of Materials Science and Chemical Engineering, 2 (2014) 1–6.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.