The Characteristics of Graphene Obtained from Rice Husk and Graphite
DOI:
https://doi.org/10.18321/ectj825Keywords:
graphene, graphite, rice husk, carbonization, chemical activationAbstract
In this paper methods for obtaining graphene oxide from rice husk were developed, which using a downward approach based on a four-stage strategy: preliminary carbonization, desilication, activation with KOH, and exfoliation and its comparison with the method of graphite oxidation. The samples were analyzed by elemental analysis, SEM, Raman, TGA and FTIR. The elemental analysis show that the proposed approach allows to produce graphene materials with a carbon content around 70% and rich in inorganic matter (0–20 wt.%) (K, Fe, Si). To remove inorganic contents, purification and functionalization step were applied. The Raman spectra of the samples indicate the presence of a mixture of graphene layers and amorphous carbon. The thermogravimetric profile of samples is characterized by a slowly weight decrease up to a final residue of ~10 wt.%. FTIR spectra are characterized by the typical broad shape of large condensed aromatic carbon bonds; only the peak due to C=C stretching modes and the overlapped peaks between 900 and 1500 cm-1 due to skeleton vibrations are detected.
References
(1). Z.A. Mansurov, Soot formation: textbook. Almaty: Kazakh University, 2015, p. 167.
(2). K.S. Novoselov, A.K. Geim, S.V. Dubonos, E.W. Hill, I.V. Grigorieva, Nature 426 (2003) 812–816. Crossref
(3). H. Muramatsu, Y. Ahm Kim, K.-S. Yang, R. Cruz-Silva, I. Toda, T. Yamada, M. Terrones, M. Endo, T. Hayashi, H. Saitoh, Small 14 (2014) 2766–2770. Crossref
(4). J. Jao, L. Liu, F. Li Graphene Oxide: Physics and Applications. Berlin: Springer, 2015, p. 154.
(5). K.I. Ho, M. Boutchich; C.Y. Su, R. Moreddu, E. Marianathan, S.R. Eugene L. Montes, C.S. Lai, Adv. Mater. 27 (2015) 6519–6525. Crossref
(6). C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312 (2006) 1191–1196. Crossref
(7). M.S. Dresselhaus, P.T. Araujo, ASC Nano 4 (2010) 6297–6302. Crossref
(8). D.P. Savitsky, A.S. Makarov, V.V. Goncharuk, Dopov. Nac. akad. nauk Ukr. 6 (2016) 87–94. Crossref
(9). N.G. Prikhod’ko, Z.A. Mansurov, M. Auelkhankyzy, B.T. Lesbaev, M. Nazhipkyzy, G.T. Smagulova, Russ. J. Phys. Chem. 9 (2015) 743–747. Crossref
(10). E.D. Grayfer, V.G. Makotchenko, A.S. Nazarov, S.J. Kim, V.E. Fedorova, Russ. Chem. Rev. 80 (2011) 751–770. Crossref
(11). A. Dasgupta, J. Matos, H. Muramatsu, Y. Ono, V. Gonzalez, H. Liu, C. Rotella, K. Fujisawa, R. Cruz-Silva, Y. Hashimoto, M. Endo, K. Kaneko, L.R. Radovic, M. Terrones, Carbon 139 (2018) 833–844. Crossref
(12). M.C. Fernández de Cordoba, J. Matos, R. Montaña, P.S. Poon, S. Lanfredi, F.R. Praxedes, J.C. Hernández-Garrido, J.J. Calvino, E. Rodríguez-Aguado, E. Rodríguez-Castellón, C.O. Ania, Catal. Today 328 (2019) 125–135. Crossref
(13). M.A. Seitzhanova, D.I. Chenchik, Z.A. Mansurov, R. Di Capua, Functional Nanostructures Proceedings 1 (2017) 6–8.
(14). J.M. Jandosov, S.V. Mikhalovsky, C.A. Howell, D.I. Chenchik, B.K. Kosher, S.B. Lyubchik, J. Silvestre-Albero, N.T. Ablaikhanova, G.T. Srailova, S.T. Tuleukhanov, S.V. Mikhalovsky, Eurasian Chem. Tech. J. 19 (2017) 303–313. Crossref
(15). A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401. Crossref
(16). J. Kaur, A. Vergara, M. Rossi, A.M. Gravagnuolo, M. Valadan, F. Corrado, M. Conte, F. Gesuele, P. Giardina, C. Altucci, RSC Advances 7 (2017) 50166–50175. Crossref
(17). M. Alfè, V. Gargiulo, R. Di Capua, F. Chiarella, J.N. Rouzaud, A. Vergara, A. Ciajolo, ACS Appl. Mater. Interfaces 4 (2012) 4491–4498. Crossref
(18). R.M. Silverstein, F.X. Webster, D.J. Kiemle, 4th ed. Wiley, 2008.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.