Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method

Authors

  • S. V. Lazareva Boreskov Institute of Catalysis, SB RAS, Prosp. Ak. Lavrentieva 5, Novosibirsk 630090, Russia
  • N. V. Shikina Boreskov Institute of Catalysis, SB RAS, Prosp. Ak. Lavrentieva 5, Novosibirsk 630090, Russia
  • L. E. Tatarova Boreskov Institute of Catalysis, SB RAS, Prosp. Ak. Lavrentieva 5, Novosibirsk 630090, Russia
  • Z. R. Ismagilov Boreskov Institute of Catalysis, SB RAS, Prosp. Ak. Lavrentieva 5, Novosibirsk 630090, Russia

DOI:

https://doi.org/10.18321/ectj677

Keywords:

colloidal silica, nanoparticles, hydrolysis, tetraethoxysilane, stöber process, high purity

Abstract

Colloidal silica (silica sol) nanoparticles were synthesized by ammonia- and hydrochloric acid-catalyzed hydrolysis of tetraethoxysilane with subsequent condensation and polymerization. Silica particles with the size of 12‒160 nm were obtained at different temperatures and ratios of the initial reactants and studied by means of TEM, AFM, IR spectroscopy and zeta-potential measurements. The reaction conditions providing the minimum particle size in the final product of the most complete hydrolysis were determined. At pH above 8.5, an increase in the SiO2 content of the sol to 23 wt.% did not change the particle size. At a low (~ 1.8 wt.%) SiO2 content of the sol, a wide variation in pH also did not exert a significant effect on the particle size. Stability of the silica sols synthesized in an alkaline medium was enhanced by the replacement of alcohol with water during evaporation at pH 8.5‒9.5. The possibility to produce silica sols with the required characteristics (particle size, pH, stability, purity, and SiO2 content in an aqueous or alcohol medium) makes them applicable in various industries.

References

1. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, Chichester, UK. 1979, 896 p. ISBN: 9780471024040

2. N.A. Shabanova, P.D. Sarkisov, The fundamentals of sol-gel nanodisperse silica technology, Akademkniga, Moscow, 2004, 208 p. (in Russian). ISBN 5-94628-168-2

3. K. Kajihara, J. Asian Ceram. Soc. 1 (2013) 121‒133. <a href="https://doi.org/10.1016/j.jascer.2013.04.002">Crossref</a><br />

4. H.E. Bergna, W.O. Roberts, Colloidal Silica: Fundamental and Application, Taylor & Francis Group, 2006, 944 p. ISBN 9780824709679

5. I.B. Rahman, V. Padavettan, J. Nanomater. 2012 Article ID 132424. <a href="https://doi.org/10.1155/2012/132424">Crossref</a><br />

6. L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Adv. Colloid Interface Sci. 214 (2014) 17–37. <a href="https://doi.org/10.1016/j.cis.2014.10.007">Crossref</a><br />

7. S.S. Joshi, V.V. Ranade, Industrial Catalytic Processes for Fine and Specialty Chemicals. Chapter 4. A. Basrur, D. Sabde, Catalyst synthesis and characterization, Elsevier, 2016, p. 138‒144. eBook ISBN: 9780128016701

8. L.I. Bikmetova, K.V. Kazantsev, E.V. Zatolokina, V.A. Drozdov, A.V. Shitova, E.A. Paukshtis, M.D. Smolikov, A.S. Bely, Chem. Sust. Develop. 1 (2013) 39–45.

9. K. Yoshida, J. Sol-Gel Sci. Technol. 43 (1) (2007) 9–13. <a href="https://doi.org/10.1007/s10971-007-1567-1">Crossref</a><br />

10. Y. Arai, H. Segawa, K. Yoshida, J. Sol-Gel Sci. Technol. 32 (1) (2004) 79–83. <a href="https://doi.org/10.1007/s10971-004-5769-5">Crossref</a><br />

11. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69 (2-3) (2014) 132– 158. <a href="https://doi.org/10.1016/j.surfrep.2014.07.001">Crossref</a><br />

12. L.-Y. Xu, Y.-Y. Huang, T. Long, Z.G. Shi, Mater. Manuf. Processes 28 (6) (2013) 626– 630. <a href="https://doi.org/10.1080/10426914.2013.773014">Crossref</a><br />

13. M. Tomas, H. Amaveda, L.A. Angurel, M. Mora, J. Eur. Ceram. Soc. 33 (4) (2013) 727– 736. <a href="https://doi.org/10.1016/j.jeurceramsoc.2012.10.020">Crossref</a><br />

14. P. Mohanty, S. Mohapatra, J. Mohapatra, S.K. Singh, P. Padhi, D.K. Mishra, Mater. Manuf. Processes 31 (10) (2016) 1311–1317. <a href="https://doi.org/10.1080/10426914.2015.1117624">Crossref</a><br />

15. A.N. Shamsutdinova, V.V. Kozik, Chem. Sust. Develop. 5 (2016) 699–704. <a href="https://doi.org/10.15372/KhUR20160515">Crossref</a><br />

16. S.S. Solntsev, M.S. Rozhkova, D.V. Graschenkov, N.V. Isaeva, G.V. Ermakova, RU Patent 2447039, 2012.

17. W. Gao, M. Rigout, H. Owens, Appl. Surf. Sci. 380 (2016) 12–15. <a href="https://doi.org/10.1016/j.apsusc.2016.02.106">Crossref</a><br />

18. R. Watanabe, T. Yokoi, E. Kobayashi, Y. Otsuka, A. Shimojima, T. Okubo, T. Tatsumi, J. Colloid Interface Sci. 360 (1) (2011) 1–7. <a href="https://doi.org/10.1016/j.jcis.2010.09.001">Crossref</a><br />

19. D.V. Kalinin, V.V. Serdobintseva, RU Patent 2426692, 2011.

20. H. Stsillat, F. Shvertfeger, B. Hakk, M. Shefer, RU Patent 2295492, 2005.

21. B. Zhao, Y. Zhang, T. Tang, F. Wang, T. Li, Q. Lu, Particuology 22 (2014) 177–184. <a href="https://doi.org/10.1016/j.partic.2014.08.005">Crossref</a><br />

22. X. Lei, B. Yu, H.-L. Cong, C. Tian, Y.- Z. Wang, Q.-B. Wang, C.-K. Liu, Integr. Ferroelectr. 154 (2014) 142–146. <a href="https://doi.org/10.1080/10584587.2014.904651">Crossref</a><br />

23. S.K. Park, K.D. Kim, H.T. Kim, Coll. Surf. A 197 (2002) 7–17. <a href="https://doi.org/10.1016/S0927-7757(01)00683-5">Crossref</a><br />

24. D.R. Hristov, E. Mahon, K.A. Dawson, Chem. Commun. 51 (2015) 17420–17423. <a href="https://doi.org/10.1039/c5cc06598d">Crossref</a><br />

25. X. Luo, J. Dong, L. Zhang, J. Du, H. Wang, W. Gao, J. Sol-Gel Sci. Tech. 81 (2017) 669–677. <a href="https://doi.org/10.1007/s10971-016-4245-3">Crossref</a><br />

26. E.J.A. Pope, J.D. Mackenzie, J. Non-Cryst. Solids 87 (1-2) (1986) 185-198. <a href="https://doi.org/10.1016/S0022-3093(86)80078-3">Crossref</a><br />

27. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1) (1968) 62–69. <a href="https://doi.org/10.1016/0021-9797(68)90272-5">Crossref</a><br />

28. C.G. Tan, B.D. Bowen, N. Epstein, J. Colloid Interface Sci. 118 (1) (1987) 290–293. <a href="https://doi.org/10.1016/0021-9797(87)90458-9">Crossref</a><br />

29. S.L. Chen, P. Dong, G.H. Yang, J.J. Yang, J. Colloid Interface Sci. 180 (1) (1996) 237–241. <a href="https://doi.org/10.1006/jcis.1996.0295">Crossref</a><br />

30. V.K. LaMer, R. Dinegar, J. Am. Chem. Soc. 72 (11) (1950) 4847–4854. <a href="https://doi.org/10.1021/ja01167a001">Crossref</a><br />

31. K.S. Kim, J.K. Kim, W.S. Kim, Ceram. Int. 28 (2) (2002) 187–194. <a href="https://doi.org/10.1016/S0272-8842(01)00076-1">Crossref</a><br />

32. A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, Mater. Sci. - Medziagotyra 10 (4) (2004) 287–290.

33. X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen, Z.S. Wang, J. Colloid Interface Sci. 341 (1) (2010) 23–29. <a href="https://doi.org/10.1016/j.cis.2009.09.018">Crossref</a><br />

34. K.A. Andrianov, The silicon organic compounds; Goskhimizdat, Moscow. 1955, 520 p. (in Russian).

35. B.N. Tarasevich, The spectra of the main classes of organic compounds ‒ Reference materials, Faculty of Chemistry, Moscow State University, Moscow, 2012, 54 p. (in Russian).

36. K. Tadanaga, K. Morita, K. Mori, M. Tatsumisago, J. Sol-Gel Sci. Technol. 68 (2013) 341–345. <a href="https://doi.org/10.1007/s10971-013-3175-6">Crossref</a><br />

37. X. Liu, N. Xu, W. Li, M. Zhang, W. Lou, X. Wang, J. Dispersion Sci. Technol. 38 (9) (2017) 1360– 1365. <a href="https://doi.org/10.1080/01932691.2016.1220319">Crossref</a><br />

38. W. Gao, M. Rigout, H. Owens, J. Nanopart. Res. 18 (2016) 387. <a href="https://doi.org/10.1007/s11051-016-3691-8">Crossref</a><br />

39. Z.R. Ismagilov, E.V. Bessudnova, N.V. Shikina, E.I. Ryabchikova, D.V. Korneev, A.V. Ishchenko, Y.A. Chesalov, A.V. Vladimirova, Chem. Eng. Trans. 27 (2012) 241–246. <a href="https://doi.org/10.3303/CET1227041">Crossref</a><br />

40. Z.R. Ismagilov, N.V. Shikina, N.A. Mazurkova, L.T. Tsikoza, F.V. Tuzikov, V.A. Ushakov, A.V. Ishchenko, N.A. Rudina, D.V. Korneev, E.I. Ryabchikova, Sci. World J. 2012. <a href="https://doi.org/10.1100/2012/498345">Crossref</a><br />

41. C.J. Brinker, J. Non-Cryst. Solids 100 (1- 3) (1988) 31–50. <a href="https://doi.org/10.1016/0022-3093(88)90005-1">Crossref</a><br />

42. J.L. Trompette, M. Meireles, J. Colloid Interface Sci. 263 (2) (2003) 522–527. <a href="https://doi.org/10.1016/S0021-9797(03)00397-7">Crossref</a><br />

Downloads

Published

2017-12-30

How to Cite

Lazareva, S. V., Shikina, N. V., Tatarova, L. E., & Ismagilov, Z. R. (2017). Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method. Eurasian Chemico-Technological Journal, 19(4), 295–302. https://doi.org/10.18321/ectj677

Issue

Section

Articles