Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method
DOI:
https://doi.org/10.18321/ectj677Keywords:
colloidal silica, nanoparticles, hydrolysis, tetraethoxysilane, stöber process, high purityAbstract
Colloidal silica (silica sol) nanoparticles were synthesized by ammonia- and hydrochloric acid-catalyzed hydrolysis of tetraethoxysilane with subsequent condensation and polymerization. Silica particles with the size of 12‒160 nm were obtained at different temperatures and ratios of the initial reactants and studied by means of TEM, AFM, IR spectroscopy and zeta-potential measurements. The reaction conditions providing the minimum particle size in the final product of the most complete hydrolysis were determined. At pH above 8.5, an increase in the SiO2 content of the sol to 23 wt.% did not change the particle size. At a low (~ 1.8 wt.%) SiO2 content of the sol, a wide variation in pH also did not exert a significant effect on the particle size. Stability of the silica sols synthesized in an alkaline medium was enhanced by the replacement of alcohol with water during evaporation at pH 8.5‒9.5. The possibility to produce silica sols with the required characteristics (particle size, pH, stability, purity, and SiO2 content in an aqueous or alcohol medium) makes them applicable in various industries.
References
2. N.A. Shabanova, P.D. Sarkisov, The fundamentals of sol-gel nanodisperse silica technology, Akademkniga, Moscow, 2004, 208 p. (in Russian). ISBN 5-94628-168-2
3. K. Kajihara, J. Asian Ceram. Soc. 1 (2013) 121‒133. <a href="https://doi.org/10.1016/j.jascer.2013.04.002">Crossref</a><br />
4. H.E. Bergna, W.O. Roberts, Colloidal Silica: Fundamental and Application, Taylor & Francis Group, 2006, 944 p. ISBN 9780824709679
5. I.B. Rahman, V. Padavettan, J. Nanomater. 2012 Article ID 132424. <a href="https://doi.org/10.1155/2012/132424">Crossref</a><br />
6. L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Adv. Colloid Interface Sci. 214 (2014) 17–37. <a href="https://doi.org/10.1016/j.cis.2014.10.007">Crossref</a><br />
7. S.S. Joshi, V.V. Ranade, Industrial Catalytic Processes for Fine and Specialty Chemicals. Chapter 4. A. Basrur, D. Sabde, Catalyst synthesis and characterization, Elsevier, 2016, p. 138‒144. eBook ISBN: 9780128016701
8. L.I. Bikmetova, K.V. Kazantsev, E.V. Zatolokina, V.A. Drozdov, A.V. Shitova, E.A. Paukshtis, M.D. Smolikov, A.S. Bely, Chem. Sust. Develop. 1 (2013) 39–45.
9. K. Yoshida, J. Sol-Gel Sci. Technol. 43 (1) (2007) 9–13. <a href="https://doi.org/10.1007/s10971-007-1567-1">Crossref</a><br />
10. Y. Arai, H. Segawa, K. Yoshida, J. Sol-Gel Sci. Technol. 32 (1) (2004) 79–83. <a href="https://doi.org/10.1007/s10971-004-5769-5">Crossref</a><br />
11. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69 (2-3) (2014) 132– 158. <a href="https://doi.org/10.1016/j.surfrep.2014.07.001">Crossref</a><br />
12. L.-Y. Xu, Y.-Y. Huang, T. Long, Z.G. Shi, Mater. Manuf. Processes 28 (6) (2013) 626– 630. <a href="https://doi.org/10.1080/10426914.2013.773014">Crossref</a><br />
13. M. Tomas, H. Amaveda, L.A. Angurel, M. Mora, J. Eur. Ceram. Soc. 33 (4) (2013) 727– 736. <a href="https://doi.org/10.1016/j.jeurceramsoc.2012.10.020">Crossref</a><br />
14. P. Mohanty, S. Mohapatra, J. Mohapatra, S.K. Singh, P. Padhi, D.K. Mishra, Mater. Manuf. Processes 31 (10) (2016) 1311–1317. <a href="https://doi.org/10.1080/10426914.2015.1117624">Crossref</a><br />
15. A.N. Shamsutdinova, V.V. Kozik, Chem. Sust. Develop. 5 (2016) 699–704. <a href="https://doi.org/10.15372/KhUR20160515">Crossref</a><br />
16. S.S. Solntsev, M.S. Rozhkova, D.V. Graschenkov, N.V. Isaeva, G.V. Ermakova, RU Patent 2447039, 2012.
17. W. Gao, M. Rigout, H. Owens, Appl. Surf. Sci. 380 (2016) 12–15. <a href="https://doi.org/10.1016/j.apsusc.2016.02.106">Crossref</a><br />
18. R. Watanabe, T. Yokoi, E. Kobayashi, Y. Otsuka, A. Shimojima, T. Okubo, T. Tatsumi, J. Colloid Interface Sci. 360 (1) (2011) 1–7. <a href="https://doi.org/10.1016/j.jcis.2010.09.001">Crossref</a><br />
19. D.V. Kalinin, V.V. Serdobintseva, RU Patent 2426692, 2011.
20. H. Stsillat, F. Shvertfeger, B. Hakk, M. Shefer, RU Patent 2295492, 2005.
21. B. Zhao, Y. Zhang, T. Tang, F. Wang, T. Li, Q. Lu, Particuology 22 (2014) 177–184. <a href="https://doi.org/10.1016/j.partic.2014.08.005">Crossref</a><br />
22. X. Lei, B. Yu, H.-L. Cong, C. Tian, Y.- Z. Wang, Q.-B. Wang, C.-K. Liu, Integr. Ferroelectr. 154 (2014) 142–146. <a href="https://doi.org/10.1080/10584587.2014.904651">Crossref</a><br />
23. S.K. Park, K.D. Kim, H.T. Kim, Coll. Surf. A 197 (2002) 7–17. <a href="https://doi.org/10.1016/S0927-7757(01)00683-5">Crossref</a><br />
24. D.R. Hristov, E. Mahon, K.A. Dawson, Chem. Commun. 51 (2015) 17420–17423. <a href="https://doi.org/10.1039/c5cc06598d">Crossref</a><br />
25. X. Luo, J. Dong, L. Zhang, J. Du, H. Wang, W. Gao, J. Sol-Gel Sci. Tech. 81 (2017) 669–677. <a href="https://doi.org/10.1007/s10971-016-4245-3">Crossref</a><br />
26. E.J.A. Pope, J.D. Mackenzie, J. Non-Cryst. Solids 87 (1-2) (1986) 185-198. <a href="https://doi.org/10.1016/S0022-3093(86)80078-3">Crossref</a><br />
27. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1) (1968) 62–69. <a href="https://doi.org/10.1016/0021-9797(68)90272-5">Crossref</a><br />
28. C.G. Tan, B.D. Bowen, N. Epstein, J. Colloid Interface Sci. 118 (1) (1987) 290–293. <a href="https://doi.org/10.1016/0021-9797(87)90458-9">Crossref</a><br />
29. S.L. Chen, P. Dong, G.H. Yang, J.J. Yang, J. Colloid Interface Sci. 180 (1) (1996) 237–241. <a href="https://doi.org/10.1006/jcis.1996.0295">Crossref</a><br />
30. V.K. LaMer, R. Dinegar, J. Am. Chem. Soc. 72 (11) (1950) 4847–4854. <a href="https://doi.org/10.1021/ja01167a001">Crossref</a><br />
31. K.S. Kim, J.K. Kim, W.S. Kim, Ceram. Int. 28 (2) (2002) 187–194. <a href="https://doi.org/10.1016/S0272-8842(01)00076-1">Crossref</a><br />
32. A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, Mater. Sci. - Medziagotyra 10 (4) (2004) 287–290.
33. X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen, Z.S. Wang, J. Colloid Interface Sci. 341 (1) (2010) 23–29. <a href="https://doi.org/10.1016/j.cis.2009.09.018">Crossref</a><br />
34. K.A. Andrianov, The silicon organic compounds; Goskhimizdat, Moscow. 1955, 520 p. (in Russian).
35. B.N. Tarasevich, The spectra of the main classes of organic compounds ‒ Reference materials, Faculty of Chemistry, Moscow State University, Moscow, 2012, 54 p. (in Russian).
36. K. Tadanaga, K. Morita, K. Mori, M. Tatsumisago, J. Sol-Gel Sci. Technol. 68 (2013) 341–345. <a href="https://doi.org/10.1007/s10971-013-3175-6">Crossref</a><br />
37. X. Liu, N. Xu, W. Li, M. Zhang, W. Lou, X. Wang, J. Dispersion Sci. Technol. 38 (9) (2017) 1360– 1365. <a href="https://doi.org/10.1080/01932691.2016.1220319">Crossref</a><br />
38. W. Gao, M. Rigout, H. Owens, J. Nanopart. Res. 18 (2016) 387. <a href="https://doi.org/10.1007/s11051-016-3691-8">Crossref</a><br />
39. Z.R. Ismagilov, E.V. Bessudnova, N.V. Shikina, E.I. Ryabchikova, D.V. Korneev, A.V. Ishchenko, Y.A. Chesalov, A.V. Vladimirova, Chem. Eng. Trans. 27 (2012) 241–246. <a href="https://doi.org/10.3303/CET1227041">Crossref</a><br />
40. Z.R. Ismagilov, N.V. Shikina, N.A. Mazurkova, L.T. Tsikoza, F.V. Tuzikov, V.A. Ushakov, A.V. Ishchenko, N.A. Rudina, D.V. Korneev, E.I. Ryabchikova, Sci. World J. 2012. <a href="https://doi.org/10.1100/2012/498345">Crossref</a><br />
41. C.J. Brinker, J. Non-Cryst. Solids 100 (1- 3) (1988) 31–50. <a href="https://doi.org/10.1016/0022-3093(88)90005-1">Crossref</a><br />
42. J.L. Trompette, M. Meireles, J. Colloid Interface Sci. 263 (2) (2003) 522–527. <a href="https://doi.org/10.1016/S0021-9797(03)00397-7">Crossref</a><br />
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.