Complete Scheme for Fullerene, Graphene, and Soot Formation in Flame

Authors

  • Z. A. Mansurov The Institute of Combustion Problems, Bogenbay batyr str. 172, 050012, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj760

Abstract

Soot formation processes have been studied for more than 100 years, they include empirical and phenomenological description of conversion of various fuels to soot particles. This article provides an overview of current state of soot formation foundations, including the chemistry of soot nucleation, nucleation, mass growth as well as size of soot particles. Consideration of this issue shows that a great progress has been made, but there is still a lot of ambiguity in many areas of our knowledge. This concerns the role of aromatic molecules and radicals in nucleation and subsequent growth mass in laminar pre-mixed flames. Along with environmental problems, in recent time there are considered soot particles as an environment for nanomaterial synthesis, such as fullerenes, carbon nanotubes and graphenes. In this regard, a complete scheme of nanomaterials formation in mode of soot formation has been developed.

References

(1). B.S. Haynes, H.Gg. Wagner, Prog. Energ. Combust. 7 (1981) 229‒273. Crossref DOI: https://doi.org/10.1016/0360-1285(81)90001-0

(2). K.H. Homann, H.G. Wagner, Some aspect of soot formation, in: J. Ray Bawen (Eds.), Dynamics of Exothermicity (Combust. Sc. Techol. Book Series, Vol. 2), Carbon and Breach Publishers 1996, pp. 151‒184.

(3). S. Salenbauch, M. Sirignano, D.L. Marchisio, M. Pollack, A. D’Anna, C. Hasse, P. Combust. Inst. 36 (2017) 771–779. Crossref DOI: https://doi.org/10.1016/j.proci.2016.08.003

(4). A.E. Daca, Ö.L. Gülder, P. Combust. Inst. 36 (2017) 737–744. Crossref DOI: https://doi.org/10.1016/j.proci.2016.07.046

(5). S.J. Klippenstein, P. Combust. Inst. 36 (2017) 77–111. Crossref DOI: https://doi.org/10.1016/j.proci.2016.07.100

(6). G.A. Kelesidis, E. Goudeli, S.E. Pratsinis, P. Combust. Inst. 36 (2017) 29–50. Crossref DOI: https://doi.org/10.1016/j.proci.2016.08.078

(7). M. Frenklach, H. Wang (1994). Detailed Mechanism and Modeling of Soot Particle Formation. In: Bockhorn H. (eds) Soot Formation in Combustion. Springer Series in Chemical Physics, vol 59. Springer, Berlin, Heidelberg. Crossref DOI: https://doi.org/10.1007/978-3-642-85167-4_10

(8). H. Bockhorn, Soot formation in Combustion, in H. Bockhorn (Eds.), Soot formation in Combustion, Springer-Verlag Berlin Heidelberg, 1994. Crossref DOI: https://doi.org/10.1007/978-3-642-85167-4

(9). Z.A. Mansurov, Combust. Explos. Shock Waves 41 (2005) 727–747. Crossref DOI: https://doi.org/10.1007/s10573-005-0083-2

(10). I. Glassman, R.A. Yetter. Combustion. 4th ed. Amsterdam: Elsevier; 2008.

(11). A Ciajolo, A D’Anna, R Barbella, C. Bertoli, Combust. Sci. Technol. 87 (1993)127–137. Crossref DOI: https://doi.org/10.1080/00102209208947211

(12). J. Ahrens, M. Bachmann, Th. Baum, J. Griesheimer, R. Kovacs, P. Weilmünster, K.- H. Homann, International Journal of Mass Spectrometry and Ion Processes 138 (1994) 133–148. Crossref DOI: https://doi.org/10.1016/0168-1176(94)04036-2

(13). M. Frenklach, Phys. Chem. Chem. Phys. 4 (2002) 2028–2037. Crossref DOI: https://doi.org/10.1039/b110045a

(14). C. Jäger, F. Huisken, H. Mutschke, I. Llamas Jansa, Th. Henning, The Astrophysical Journal 696 (2009) 706–712. Crossref DOI: https://doi.org/10.1088/0004-637X/696/1/706

(15). J.B. Howard, P. Combust. Inst. 24 (1992) 933– 946. Crossref DOI: https://doi.org/10.1016/S0082-0784(06)80111-6

(16). W.J. Grieco, A.L. Lafleur, K.C. Swallow, P. Combust. Inst. 27 (1998) 1669–1675. Crossref DOI: https://doi.org/10.1016/S0082-0784(98)80006-4

(17). K.E. Drexler, Nanosystems: molecular machinery, manufacturing and computation, John Wiley and Sons, New York, (1992).

(18). D.R. Tree, K.I. Svensson, Prog. Energ. Combust. 33 (2007) 272–309. Crossref DOI: https://doi.org/10.1016/j.pecs.2006.03.002

(19). P. Gerhardt, S. Loffler K.H. Homann, P. Combust. Inst. 22 (1988) 395–401. Crossref DOI: https://doi.org/10.1016/S0082-0784(89)80046-3

(20). M. Frenklach, L.B. Ebert, J. Phys. Chem. 92 (1988) 561–563. Crossref DOI: https://doi.org/10.1021/j100313a061

(21). A.L. Lafleur, J.B. Howard, J.A. Marr, T. Yadav, J. Phys. Chem. 97 (1993) 13539–13543. Crossref DOI: https://doi.org/10.1021/j100153a020

(22). Z.A. Mansurov, Advanced Materials Research 486 (2012) 134–139. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMR.486.134

(23). N.G. Prikhodko, B.T. Lesbayev, M. Auyelkhankyzy, Z.A. Mansurov, Russ. J. Phys. Chem. B 8 (2014) 61–64. Crossref DOI: https://doi.org/10.1134/S1990793114010059

(24). Z.A. Mansurov, Journal of Materials Science and Chemical Engineering 2 (2014) 1–6. Crossref DOI: https://doi.org/10.4236/msce.2014.21001

(25). N.G. Prikhodko, G.T. Smagulova, N. Rakhymzhan, M. Auelkhankyzy, B.Т. Lesbayev, M. Nazhypkyzy, Z.A. Mansurov, Combust. Sci. Technol. 190 (2018) 1923–1934. Crossref DOI: https://doi.org/10.1080/00102202.2018.1472588

(26). A. Arad, E. Sher, G. Enden, Fuel 206 (2017) 437–452. Crossref DOI: https://doi.org/10.1016/j.fuel.2017.06.024

(27). Z.A. Mansurov, Soot formation, Almaty, Kazakh University, 2015, 167 p.

Downloads

Published

21-12-2018

How to Cite

Mansurov, Z. A. (2018). Complete Scheme for Fullerene, Graphene, and Soot Formation in Flame. Eurasian Chemico-Technological Journal, 20(4), 277–281. https://doi.org/10.18321/ectj760

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>