Comparative Analysis of Physicochemical Properties of Rutile TiO2 with Hierarchical 3D Architecture Prepared by Liquid Hydrolysis of TiCl4 and Hydrothermal Method

  • N. V. Shikina Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • S. A. Yashnik Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • A. V. Toktarev Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • A. V. Ishchenko Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • V. A. Ushakov Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • M. S. Mel’gunov Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia
  • Z. A. Mansurov Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan
  • Z. R. Ismagilov Federal Research Center Boreskov Institute of Catalysis SB RAS, 5 pr. Akad. Lavrentieva, Novosibirsk, Russia; Federal Research Center of Coal and Coal Chemistry Institute of Coal Chemistry and Materials Science SB RAS, 18 Sovetskiy pr., Kemerovo, Russia
Keywords: titanium dioxide, nanostructured rutile, porous structure, thermal treatment

Abstract

TiO2 (rutile) samples with a hierarchical 3D nanostructure of the particles were synthesized by two methods: liquid hydrolysis of TiCl4 at 90 °С and atmospheric pressure; hydrothermal synthesis from TiCl4 at 160 °С and different [H2O]/[Ti] ratios. The effect exerted by conditions of the synthesis and post-treatments on the crystallite size, morphology, electronic properties and pore structure of the rutile samples was investigated. It was shown that severe hydrothermal conditions with the ratio [H2O]/[Ti] = 20 provide the formation of a more perfect crystal structure of rutile with a smaller band gap energy (3.00 eV against 3.06 eV for the rutile obtained by liquid hydrolysis at atmospheric pressure). The study revealed the stabilizing effect of cerium cations on the pore structure of rutile, which changes upon thermal treatment.

References

(1). K. Nakata, A. Fujishima, J. Photoch. Photobio. C 13 (2012) 169‒189. Crossref

(2). P.X. Gao, P. Shimpi, H. Gao, C. Liu, Y. Guo, W. Cai, K.T. Liao, G. Wrobel, Z. Zhang, Z. Ren, H.J. Lin, Int. J. Mol. Sci. 13 (2012) 73939‒7423. Crossref

(3). Z. Ren, Y. Guo, C.H. Liu, P.X. Gao, Front Chem. 1 (2013) 1‒22. Crossref

(4). F. Mendez-Arriaga, E. de la Calleja, L. Ruiz- Huerta, A. Caballero-Ruiz, R. Almanza, Mat. Sci. Semicon. Proc. 100 (2019) 35‒41. Crossref

(5). M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69‒96. Crossref

(6). M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B: Environ. 125 (2012) 331‒349. Crossref

(7). N. Shaham-Waldmann, Y. Paz, Mat. Sci. Semicon. Proc. 42 (2016) 72‒80. Crossref

(8). C. Byrne, G. Subramanian, S.C. Pillai, J. Environ. Chem. Eng. 6 (2018) 3531‒3555. Crossref

(9). A.L. Linsebigler, G. Lu, J.T. Yates, Chem Rev. 95 (1995) 735‒758. Crossref

(10). A.J. Haider, Z.N. Jameel, I.H. M. Al-Hussaini, Energy Procedia 157 (2019) 17‒29. Crossref

(11). Z. Wu, Q. Wu, L. Du, C. Jiang, L. Piao, Particuology 15 (2014) 61‒70. Crossref

(12). N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, A.J. Frank, J. Phys. Chem. B 103 (1999) 3308–3314. Crossref

(13). J. Lin, Y-U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, S.X. Dou, Sci. Rep. 4 (2014) 5769. Crossref

(14). Z. Meng, S. Cai, W. Tu, H. Tang, J. Nanosci. Nanotechnol. 20 (2020) 1085–1097. Crossref

(15). R. Khan, S. Javed, M. Islam. Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications. In book: Titanium Dioxide- Material for a Sustainable Environment. Edited by D. Yang. BoD-Books on Demand. 2018, 518 p. Crossref

(16). Y. Li, Y. Fan, Y. Chen, J. Mater. Chem. 12 (2002) 1387–1390. Crossref

(17). Z.R. Ismagilov, E.V. Bessudnova, N.V. Shikina, V.A. Ushakov, Nanotechnol. Russ. 9 (2014) 21– 25. Crossref

(18). E.V. Bessudnova, N.V. Shikina, Z.R. Ismagilov, International Scientific Journal for Alternative Energy and Ecology [Alternativnaya Energetika i Ekologiya] 7 (147) (2014) 39–47 (in Russ.).

(19). E.V. Bessudnova, N.V. Shikina, M.S. Mel’gunov, Z.R. Ismagilov, Nanotechnol. Russ. 12 (2017) 156–164. Crossref

(20). N.V. Shikina, E.V. Bessudnova, A.P. Nikitin, A.V. Ishchenko, N.A. Rudina, D.S. Selishchev, D.V. Kozlov, Z.R. Ismagilov, J. Nanosci. Nanotechnol. 20 (2020) 1303–1314. Crossref

(21). G.A. Zenkovets, A.A. Shutilov, V.Yu. Gavrilov, S.V. Tsybulya, G.N. Kryukova, Kinet. Catal. 48 (2007) 742–748. Crossref

(22). G.A. Zenkovets, V.Yu. Gavrilov, A.A. Shutilov, S.V. Tsybulya. Kinet. Catal. 50 (2009) 760–767. Crossref

(23). A.A. Shutilov, G.A. Zenkovets, V.Yu. Gavrilov, S.V. Tsybulya, Kinet. Catal. 52 (2011) 111–118. Crossref

(24). N.A. Koryabkina, R.A. Shkrabina, V.A. Ushakov, Z.R. Ismagilov, M. Lausberg, F. Keptein, Kinet. Catal. 38 (1997) 112–116.

(25). N.A. Koryabkina, R.A. Shkrabina, V.A. Ushakov, Z.R. Ismagilov, Catal. Today 29 (1996) 427‒431. Crossref

(26). N.V. Shikina, E.V. Bessudnova, V.A. Ushakov, A.P. Nikitin, M.S. Mel’gunov, A.V. Ishchenko, Z. R. Ismagilov, Nanosystems: Phys. Chem. Math. 9 (2018) 688–695. Crossref

(27). J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15 (1996) 627–637. Crossref

(28). R.L. Penn, J.F. Banfield, Science 281 (1998) 969–971. Crossref

(29). T. Zhu, S.P. Gao, J. Phys. Chem. C 118 (2014) 11385–11396. Crossref

(30). Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong, G. He, Zhaoqi, Sun, J. Alloys Compd. 662 (2016) 179–184. Crossref

(31). H. Choi, S. Khan, J. Choi, D.T.T. Dinh, S.Y. Lee, U. Paik, S.-H. Cho, S. Kim, Appl. Catal. B-Environ. 210 (2017) 513–521. Crossref

(32). H. Lin, C.P. Huang, W. Li, C. Ni, S. Ismat Shah, Yao-Hsuan Tseng, Appl. Catal. B-Environ. 68 (2006) 1–11. Crossref

(33). M.E. Contreras-Garcia, M.L. Garcia-Benjume, V.I. Macias-Andres, E. Barajas-Ledesma, A. Medina-Flores, M.I. Espitia-Cabrera, Mat. Sci. Eng. B 183 (2014) 78–85. Crossref

(34). J.C. Cano-Franco, M. Alvarez-Lainez, Mater. Sci. Semicon. Proc. 90 (2019) 190–197. Crossref

Published
2020-09-30
How to Cite
[1]
N. Shikina, “Comparative Analysis of Physicochemical Properties of Rutile TiO2 with Hierarchical 3D Architecture Prepared by Liquid Hydrolysis of TiCl4 and Hydrothermal Method”, Eurasian Chem.-Technol. J., vol. 22, no. 3, pp. 165-175, Sep. 2020.
Section
Articles