Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method
Abstract
Colloidal silica (silica sol) nanoparticles were synthesized by ammonia- and hydrochloric acid-catalyzed hydrolysis of tetraethoxysilane with subsequent condensation and polymerization. Silica particles with the size of 12‒160 nm were obtained at different temperatures and ratios of the initial reactants and studied by means of TEM, AFM, IR spectroscopy and zeta-potential measurements. The reaction conditions providing the minimum particle size in the final product of the most complete hydrolysis were determined. At pH above 8.5, an increase in the SiO2 content of the sol to 23 wt.% did not change the particle size. At a low (~ 1.8 wt.%) SiO2 content of the sol, a wide variation in pH also did not exert a significant effect on the particle size. Stability of the silica sols synthesized in an alkaline medium was enhanced by the replacement of alcohol with water during evaporation at pH 8.5‒9.5. The possibility to produce silica sols with the required characteristics (particle size, pH, stability, purity, and SiO2 content in an aqueous or alcohol medium) makes them applicable in various industries.
References
2. N.A. Shabanova, P.D. Sarkisov, The fundamentals of sol-gel nanodisperse silica technology, Akademkniga, Moscow, 2004, 208 p. (in Russian). ISBN 5-94628-168-2
3. K. Kajihara, J. Asian Ceram. Soc. 1 (2013) 121‒133. Crossref
4. H.E. Bergna, W.O. Roberts, Colloidal Silica: Fundamental and Application, Taylor & Francis Group, 2006, 944 p. ISBN 9780824709679
5. I.B. Rahman, V. Padavettan, J. Nanomater. 2012 Article ID 132424. Crossref
6. L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Adv. Colloid Interface Sci. 214 (2014) 17–37. Crossref
7. S.S. Joshi, V.V. Ranade, Industrial Catalytic Processes for Fine and Specialty Chemicals. Chapter 4. A. Basrur, D. Sabde, Catalyst synthesis and characterization, Elsevier, 2016, p. 138‒144. eBook ISBN: 9780128016701
8. L.I. Bikmetova, K.V. Kazantsev, E.V. Zatolokina, V.A. Drozdov, A.V. Shitova, E.A. Paukshtis, M.D. Smolikov, A.S. Bely, Chem. Sust. Develop. 1 (2013) 39–45.
9. K. Yoshida, J. Sol-Gel Sci. Technol. 43 (1) (2007) 9–13. Crossref
10. Y. Arai, H. Segawa, K. Yoshida, J. Sol-Gel Sci. Technol. 32 (1) (2004) 79–83. Crossref
11. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69 (2-3) (2014) 132– 158. Crossref
12. L.-Y. Xu, Y.-Y. Huang, T. Long, Z.G. Shi, Mater. Manuf. Processes 28 (6) (2013) 626– 630. Crossref
13. M. Tomas, H. Amaveda, L.A. Angurel, M. Mora, J. Eur. Ceram. Soc. 33 (4) (2013) 727– 736. Crossref
14. P. Mohanty, S. Mohapatra, J. Mohapatra, S.K. Singh, P. Padhi, D.K. Mishra, Mater. Manuf. Processes 31 (10) (2016) 1311–1317. Crossref
15. A.N. Shamsutdinova, V.V. Kozik, Chem. Sust. Develop. 5 (2016) 699–704. Crossref
16. S.S. Solntsev, M.S. Rozhkova, D.V. Graschenkov, N.V. Isaeva, G.V. Ermakova, RU Patent 2447039, 2012.
17. W. Gao, M. Rigout, H. Owens, Appl. Surf. Sci. 380 (2016) 12–15. Crossref
18. R. Watanabe, T. Yokoi, E. Kobayashi, Y. Otsuka, A. Shimojima, T. Okubo, T. Tatsumi, J. Colloid Interface Sci. 360 (1) (2011) 1–7. Crossref
19. D.V. Kalinin, V.V. Serdobintseva, RU Patent 2426692, 2011.
20. H. Stsillat, F. Shvertfeger, B. Hakk, M. Shefer, RU Patent 2295492, 2005.
21. B. Zhao, Y. Zhang, T. Tang, F. Wang, T. Li, Q. Lu, Particuology 22 (2014) 177–184. Crossref
22. X. Lei, B. Yu, H.-L. Cong, C. Tian, Y.- Z. Wang, Q.-B. Wang, C.-K. Liu, Integr. Ferroelectr. 154 (2014) 142–146. Crossref
23. S.K. Park, K.D. Kim, H.T. Kim, Coll. Surf. A 197 (2002) 7–17. Crossref
24. D.R. Hristov, E. Mahon, K.A. Dawson, Chem. Commun. 51 (2015) 17420–17423. Crossref
25. X. Luo, J. Dong, L. Zhang, J. Du, H. Wang, W. Gao, J. Sol-Gel Sci. Tech. 81 (2017) 669–677. Crossref
26. E.J.A. Pope, J.D. Mackenzie, J. Non-Cryst. Solids 87 (1-2) (1986) 185-198. Crossref
27. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1) (1968) 62–69. Crossref
28. C.G. Tan, B.D. Bowen, N. Epstein, J. Colloid Interface Sci. 118 (1) (1987) 290–293. Crossref
29. S.L. Chen, P. Dong, G.H. Yang, J.J. Yang, J. Colloid Interface Sci. 180 (1) (1996) 237–241. Crossref
30. V.K. LaMer, R. Dinegar, J. Am. Chem. Soc. 72 (11) (1950) 4847–4854. Crossref
31. K.S. Kim, J.K. Kim, W.S. Kim, Ceram. Int. 28 (2) (2002) 187–194. Crossref
32. A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, Mater. Sci. - Medziagotyra 10 (4) (2004) 287–290.
33. X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen, Z.S. Wang, J. Colloid Interface Sci. 341 (1) (2010) 23–29. Crossref
34. K.A. Andrianov, The silicon organic compounds; Goskhimizdat, Moscow. 1955, 520 p. (in Russian).
35. B.N. Tarasevich, The spectra of the main classes of organic compounds ‒ Reference materials, Faculty of Chemistry, Moscow State University, Moscow, 2012, 54 p. (in Russian).
36. K. Tadanaga, K. Morita, K. Mori, M. Tatsumisago, J. Sol-Gel Sci. Technol. 68 (2013) 341–345. Crossref
37. X. Liu, N. Xu, W. Li, M. Zhang, W. Lou, X. Wang, J. Dispersion Sci. Technol. 38 (9) (2017) 1360– 1365. Crossref
38. W. Gao, M. Rigout, H. Owens, J. Nanopart. Res. 18 (2016) 387. Crossref
39. Z.R. Ismagilov, E.V. Bessudnova, N.V. Shikina, E.I. Ryabchikova, D.V. Korneev, A.V. Ishchenko, Y.A. Chesalov, A.V. Vladimirova, Chem. Eng. Trans. 27 (2012) 241–246. Crossref
40. Z.R. Ismagilov, N.V. Shikina, N.A. Mazurkova, L.T. Tsikoza, F.V. Tuzikov, V.A. Ushakov, A.V. Ishchenko, N.A. Rudina, D.V. Korneev, E.I. Ryabchikova, Sci. World J. 2012. Crossref
41. C.J. Brinker, J. Non-Cryst. Solids 100 (1- 3) (1988) 31–50. Crossref
42. J.L. Trompette, M. Meireles, J. Colloid Interface Sci. 263 (2) (2003) 522–527. Crossref
Copyright (c) 2017 Eurasian Chemico-Technological Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.