Effect of Preparation Mode on the Properties of Mn-Na-W/SiO2 Catalysts for Oxidative Coupling of Methane: Conventional Methods vs. POSS Nanotechnology
DOI:
https://doi.org/10.18321/ectj430Keywords:
oxidative coupling of methane Mn-Na-W/SiO2 catalysts preparation methodsAbstract
Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/SiO2 catalysts prepared by conventional methods
and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+Oh cations in the isolated state, while Mn3+Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily
reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800‒850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio С2Н4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method.
References
[2]. E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Ind. Eng. Chem. Res. 46 (2007) 4063‒4074.
[3]. I.Z.Ismagilov, E.V.Matus, V.V.Kuznetsov, N.Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 10 (2013) 10‒18.
[4]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A 481 (2014) 104‒115.
[5]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J.Hydrogen Energy 39 (2014) 20969‒21006.
[6]. E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, Reac. Kinet. Catal. Let. 98 (2009) 59‒67.
[7]. N.T. Vasenin, V.F. Anufrienko, I.Z. Ismagilov, T.V. Larina, E.A. Paukshtis, E.V. Matus, L.T. Tsikoza, M.A. Kerzhentsev, Z.R. Ismagilov, Тop. Catal. 32 (2005) 61‒70.
[8]. J.H. Lunsford, Catal. Today 63 (2000) 165‒174.
[9]. I.Z. Ismagilov, E.V. Matus, S.D. Vasil’ev, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinetics and Catalysis 56 (2015) 456–465.
[10]. S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, Appl. Catal. A 425‒426 (2012) 53‒61.
[11]. O.V. Buyevskaya, M. Rothaemel, H.W. Zanthoff, M. Baerns, J. Catal. 146 (1994) 346‒357.
[12]. S. Pak, P. Qiu, J.H. Lunsford, J. Catal. 179 (1998) 222‒230.
[13]. U. Zavyalova, M. Holena, R. Schlögl, M. Baerns, ChemCatChem. 3 (2011) 1935‒1947.
[14]. L. Olivier, S. Haag, H. Pennemann, C. Hofmann, C. Mirodatos, A.C. Veen, Catal. Today 137 (2008) 80‒89.
[15]. Z.C. Jiang, C.J. Yu , X.P. Fang, S.B. Li, H.L.Wang, J. Phys. Chem. (1993) 12870‒12875.
[16]. H.S. Chen, J.Z. Niu, B. Zhang, S.B. Li, Acta Phys. Chim. Sinica 17 (2001) 111‒115.
[17]. D. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal. 155 (1995) 390‒402.
[18]. Hou, Y. Cao, W. Xiong, H. Liu, Y. Kou, Ind. Eng. Chem. Res. 45 (2006) 7077‒7083.
[19]. Z.C. Jiang, H. Gong, S.B. Li, Stud. Surf. Sci. Catal. 112 (1997) 481‒490.
[20]. Y. Kou, B. Zhang, J. Niu, S. Li, H.Wang, T.Tanaka, S. Yoshida, J. Catal. 173 (1998) 399‒408.
[21]. S. Ji, T. Xiao, S. Li, C. Xu, R. Hou, K.S. Coleman, M.L.H Green, Appl. Catal. A 225 (2002) 271‒284.
[22]. A. Palermo, J.P.H. Vazques, A.F. Lee, M.S. Tikhov, R.M. Lambert, J. Catal. 177 (1998) 259‒266.
[23]. J.G. Wu, S.B. Li, J. Phys. Chem. 99 (1995) 4566‒4568.
[24]. A.G. Dedov, G.D. Nipan, A.S. Loktev, A.A. Tyunyaev, V.A. Ketsko, K.V. Parkhomenko, I.I. Moiseev, Appl. Catal. A: Gen. 406 (2011) 1‒12.
[25]. J. Wang, L. Chou, B. Zhang, H. Song, J. Zhao, J. Yang, S. Li, J. Mol. Catal. A: Gen. 245 (2006) 272‒277.
[26]. W. Zheng, D. Cheng, F. Chen, X. Zhan, J. Natur. Gas Chem. 19 (2010) 515‒521.
[27]. R. Ghose, H.T. Hwang, A. Varma, Appl. Catal. A: Gen. 452 (2013) 147‒154.
[28]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, I.P. Prosvirin, R.M. Navarro, J.L.G. Fierro, G. Gerritsen, E. Abbenhuis, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 17 (2015) 105‒118.
[29]. K. Wada, T. Mitsudo, Catal. Surv. Asia 9 (2005) 229‒241.
[30]. A.J. Ward, A.F. Masters, T. Maschmeyer, Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts, 2011. P. 135‒166 In: C. Hartmann-Thompson (ed.), Applications of Polyhedral Oligomeric Silsesquioxanes, Advances in Silicon Science 3, DOI 10.1007/978-90-481-3787-9_3, Springer Science+Business Media B.V.
[31]. N. Maxim, A. Overweg, P.J. Kooyman, A. Nagy, R.A. Santena, H.C.L. Abbenhuis, J. Mater. Chem. 12 (2002) 3792‒3798.
[32]. N. Maxim, Metal silesquioxanes as precursors to microporous metallosilicates PhD, Technische Universiteit Eindhoven, 2002.
[33]. N. Maxim, H.C.L. Abbenhuis, P.J. Stobbelaar, B.L. Mojet, R.A. van Santen, Phys. Chem. Chem. Phys. 1 (1999) 4473‒4477.
[34]. N. Maxim, P.C.M M. Magusin, P.J. Kooyman, J.H.M.C. van Wolput, R.A. van Santen, H.C.L. Abbenhuis, Chem. Mater. 13 (2001) 2958-2964.
[35]. R. Murugavel, P. Davis, V. Shete, Inorg. Chem. 42 (2003) 4696‒4706.
[36]. J.H. Scofield, Electron Spectrosc. Relat. Phenom. 8 (1976) 129‒137.
[37]. B.R. Strohmeier, D.M. Hercules, J. Phys. Chem. 88 (1984) 4922‒4929.
[38]. V. Bayer, R. Podloucky, C. Franchini, Phys. Rev. B 76 (2007) 165428.
[39]. C.D. Wagner, Faraday Discuss. Chem. Soc. 60 (1975) 291‒300.
[40]. S.C. Moulzolf, S. Ding, R.J. Lad, Sens. Actuat. B 77 (2001) 375‒382.
[41]. S.F. Ho, S. Contarini, J.W. Rabalais, J. Phys. Chem. 91 (1987) 4779‒4788.
[42]. T.-D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Micropor. Mesopor. Mater. 119 (2009) 290‒298.
[43]. T.R. Pauly, Y. Liu, T.J. Pinnavaia, S.J.L. Billinge, T.P. Rieker, J. Am. Chem. Soc. 121 (1999) 8835‒8842.
[44]. N.A.M Deraz, G.A El-Shobaky, Thermochim. Acta 375 (2001) 137‒145.
[45]. W.M. Shaheen, M.M. Selim, J. Therm. Anal. Calorim. 59 (2000) 961‒970.
[46]. V.G. Makhankova, O.V. Khavryuchenko, V.V. Lisnyak, V.N. Kokozay, V.V. Dyakonenko, O.V. Shishkin, B.W. Skelton, J. Jezierska, J. Solid State Chem. 183 (2010) 2695‒2702.
[47]. M.A. Mohamed, S.A. Halawy, Thermochim. Acta, 242 (1994) 173‒186.
[48]. M. Afzal, P.K. Butt, H. Ahmad, J. Therm. Anal. 37 (1991) 1015‒1023.
[49]. M.I. Zaki, M.A. Hasan, L. Pasupulety, K. Kumari, Thermochim. Acta 303 (1997) 171‒181.
[50]. Y. Suzuki, K. Muraishi, H. Ito, Thermochim. Acta 258 (1995) 231‒241.
[51]. G.G.T. Guarini, L. Dei, Thermochim. Acta 250 (1995) 85‒96.
[52]. C.W.F.T. Pistorius, Chem. Phys. 44 (1966) 4532‒4537.
[53]. C.L. Lima, G.D. Saraiva, P.T.C. Freire, M. Maczka, W. Paraguassu, F. F. de Sousa, J.M. Filho, J. Raman Spectrosc. 42 (2011) 799‒802.
[54]. X.-L. Sun, W.-X. Li, X.-M. Wang, X.-P. Jing, Phase Trans. 83 (2010) 491‒500.
[55]. J.M. Kim, S.M. Chang, S.M. Kong, K.-S. Kim, J. Kim, W.-S. Kim, Ceram. Intern. 35 (2009) 1015‒1019.
[56]. P. Staszczuk, Colloids Surfaces A: Phys. Eng. Asp. 105 (1995) 291‒303.
[57]. Y. Zeng, Z. Li, L. Wang, Y. Xiong, CrystEngComm 14 (2012) 7043‒7048.
[58]. F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Appl. Catal. B: Environ. 3 (1994) 173‒189.
[59]. H. Yin, Y. Ding, H. Luo, H. Zhu, D. He, J. Xiong,L. Lin, Appl.Catal. A 243 (2003) 155‒164.
[60]. H. Treviño, G.-D. Lei, W.M.H. Sachtler, J. Catal. 154 (1995) 245‒252.
[61]. Y. Wang, Z. Song, D. Ma, H.Y. Luo, D.B. Liang, X.H. Bao, J. Mol. Catal. A: Chem. 149 (1999) 51‒61.
[62]. A. Malekzadeh, A. Khodadadi, A. K. Dalai, M. Abedini, J. Natur. Gas Chem. 16 (2007) 121‒129.
[63]. C. Bigey, L. Hilaire, G. Maire, J. Catal. 184 (1999) 406‒420.
[64]. C. Bigey, L. Hilaire, G. Maire, J. Catal. 198 (2001) 208‒222.
[65]. Q. Zhao, S.-L. Chen, J. Gao, C. Xu, Trans. Met. Chem. 34 (2009) 621‒627.
[66]. A. de Lucas, J.L. Valverde, P. Canizares, L. Rodriguez, Appl. Catal. A 172 (1998) 165‒176.
[67]. V. Logie, G. Maire, D. Michel, J.-L. Vignes, J. Catal. 188 (1999) 90‒101.
[68]. V.M. Benitez, C.A. Querini, N.S. Figoli, Appl. Catal. A 252 (2003) 427‒436.
[69]. S.M.K. Shahri, A.N. Pour, J. Natur. Gas Chem. 19 (2010) 47‒53.
[70]. S. Mahmoodi, M.R. Ehsani, M. Hamidzadeh, Iran. J. Chem. Chem. Eng. 30 (2011) 29‒36.
[71]. Z. Gholipour, A. Malekzadeh, R. Hatami, Y. Mortazavi, A. Khodadadi, J. Natur. Gas Chem. 19 (2010) 35‒42.
[72]. A.B.P. Lever, Inorganic Electronic Spectroscopy.- 2nd ed.; Elsevier: Amsterdam – Oxford – New York – Tokyo, 1987.
[73]. D.T. Sviridov, R.K. Sviridova, Yu.F. Smirnov. Optical Spectra of Transition Metal Ions in Crystals. Nauka, Moscow, 1976, 266 p.
[74]. M. Gharibi, F.T. Zangeneh, F.Yaripour, S.Sahebdelfar, Appl.Catal. A 443‒444 (2012) 8‒26.
[75]. V.S. Arutunov, O.V. Krylov, Oxidative conversion of methane.-Moscow: Nauka, 1998.-361 p.
[76]. K. Langfeld, B. Frank, V.E. Strempel, C. BergerKarin, G. Weinberg, E.V. Kondratenko, R. Schomäcker, Appl. Catal. A 417-418 (2012)145‒152.
[77]. M. Ioffe, P. Bosch, T. Viveros, H. Sanchez, Y.G. Borodko, Mater. Chem. Phys. 51 (1997) 269‒275.
[78]. Y.T. Chua, A.R. Mohamed, S. Bhatia, Appl. Catal. A. 343 (2008) 142‒148.
[79]. U. Simona, O. Gorke, A. Berthold, S. Arndt, R. Schomacker, H. Schubert, Chem. Eng. J. 168 (2011) 1352‒1359.
[80]. T.P. Tiemersma, M.J. Tuinier, F. Gallucci, J.A.M. Kuipers, M. van Sint Annaland, Appl. Catal. A 433–434 (2012) 96‒108.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.