The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions
DOI:
https://doi.org/10.18321/ectj954Keywords:
Carbon nanomaterials, Metal nanoparticles, Catalyst, Oxidative desulfurizationAbstract
Metal-carbon materials M/CNTs (M = Ce, Сu, Mo) were synthesized by incipient wetness impregnation and their physicochemical characteristics were studied using various methods (inductively coupled plasma optical emission spectrometry, thermal analysis coupled with mass spectrometry, low-temperature nitrogen adsorption, X-ray diffraction and structural analysis, scanning electron microscopy, and Raman spectroscopy). It was found that M/CNTs (M = Ce, Сu, Mo) are the mesoporous materials consisting of carbon nanotubes with deposited СeO2, Сu2O/Cu or МоО3/MoO2 particles, respectively. The dispersion of supported species and their deposition uniformity improve in the series Сu < Се < Мо. The type of metal was shown to affect thermal stability as well as the textural and structural properties of the samples. The thermal stability of materials increases in the series Ce < Cu ≈ Mo, which is caused by different redox properties of the metals and also by the composition of products of the metal precursor decomposition. It is promising to use the developed materials as the catalysts for deep purification of diesel fraction components from sulfur compounds.
References
(1). Ecology and economy: dynamics of air pollution ahead of ratification of the Paris Agreement [Bulletin of current trends in the Russian economy 57 (2019) (in Russian). Electronic resource. Access mode: URL
(2). Technical regulation of the Customs Union «On requirements for automobile and aviation gasoline, diesel and marine fuel, jet fuel and fuel oil» ТР ТС 013/2011 (as amended on December 19, 2019) [Electronic resource]. Access mode: URL
(3). A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today 153 (2010) 1‒68. Crossref
(4). J.N.D. de Leon., C.R. Kumar, J. Antúnez-García, S. Fuentes-Moyado, Catalysts 9 (2019) 87. Crossref
(5). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199–255. Crossref
(6). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref
(7). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu. Kinet. Catal. 56 (2015) 466–475. Crossref
(8). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu. Chemistry for Sustainable Development 23 (2015) 459–467.
(9). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A.V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem. Tech. J. 17 (2015) 119–128. Crossref
(10). Patent US 8906227B2. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(11). Patent US 8920635B2. Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(12). US Patent application US 2013/0026072A1. Сatalytic compositions useful in removal of sulfur compounds from gaseos hydrocarbons, processes for making these and uses thereof. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(13). US Patent application US 2016/14/987141. Methods for gas phase oxidative desulphurization of hydrocarbons using CuZnAl catalysts promoted with group VIB metal oxides. Koseoglu, Yaming Jin, Z.R. Ismagilov, S.A. Yashnik, A.V.Salnikov, M.A. Kerzhentsev, V.N. Parmon.
(14). International Application WO2013116338 A1. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(15). M.N. Hossain, H.C. Park, H.S. Choi, Catalysts 9 (2019) 229. Crossref
(16). W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, W.N.A.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78–84. Crossref
(17). T. Guo, W. Jiang, Y. Ruana, L. Dong, H. Liu, H. Li, W. Zhu, H. Li, Colloid. Surface. A 537 (2018) 243–249. Crossref
(18). K.-G. Haw, W.A.W.A. Bakar, R. Ali, J.-F. Chong, A.A.A. Kadir, Fuel Process. Technol. 91 (2010) 1105–1112. Crossref
(19). N.M. Meman, B. Zarenezhad, A. Rashidi, Z. Hajjar, E. Esmaeili, J. Ind. Eng. Chem. 22 (2015) 179–184. Crossref
(20). B. Zapata, F. Pedraza, M.A. Valenzuela, Catal. Today 106 (2005) 219–221. Crossref
(21). L.C. Caero, E. Hernandez, F. Pedraza, F. Murrieta, Catal. Today 107–108 (2005) 564– 569. Crossref
(22). F.-L. Yu, C.-Y. Liu, B. Yuan, C.-X. Xie, S.-T. Yu, Catal. Commun. 68 (2015) 49–52. Crossref
(23). J.T. Sampanthar, H. Xiao, H. Dou, T.Y. Nah, X. Rong, W.P. Kwan, Appl. Catal. B. 63 (2006) 85–93. Crossref
(24). E.V. Rakhmanov, D. Jinyuan, O.A. Fedorova, A.V. Tarakanova, A.V. Anisimov, Petrol. Chem. 51 (2011) 216–221. Crossref
(25). А. Corma, P. Concepcio, M. Boronat, M.J. Sabater, J. Navas, M.J. Yacaman, E. Larios, A. Posadas, M.A. Lo´pez-Quintela, D. Buceta, E. Mendoza, G Guilera, A. Mayoral, Nat. Chem. 5 (2013) 775–781. Crossref
(26). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref
(27). Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175–1181. Crossref
(28). CNT series Taunit [Electronic resource]. Access mode: URL
(29). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem. Tech. J. 21 (2019) 291–302. Crossref
(30). E.V. Matus, L.M. Khitsova, O.S. Efimova, S.A. Yashnik, N.V. Shikina, Z.R. Ismagilov, Eurasian Chem. Tech. J. 21 (2019) 303–316. Crossref
(31). C.A. Strydom, C.P.J. van Vuuren, Journal of Thermal Analysis 32 (1987) 157–160. Crossref
(32). J. Paulik, F. Paulik, M. Arnold, Journal of Thermal Analysis 34 (1988) 1455–1466. Crossref
(33). M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Bios. 10 (2015) 635–641.
(34). A. Biedunkiewicz, M. Krawczyk, U. Gabriel- Polrolniczak, P. Figiel, J. Therm. Anal. Calorim. 116 (2014) 715–726. Crossref
(35). G. Ciembroniewicz, R. Dziembaj, R. Kalicki, Journal of Thermal Analysis 27 (1983) 125–138. Crossref
(36). R.A. Di Leo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref
(37). Deniz Cakir. Enhanced Raman signatures on copper based-materials. Université Montpellier, 2017. English. 179 p.
(38). M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 822–826. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.