The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions
DOI:
https://doi.org/10.18321/ectj954Keywords:
Carbon nanomaterials, Metal nanoparticles, Catalyst, Oxidative desulfurizationAbstract
Metal-carbon materials M/CNTs (M = Ce, Сu, Mo) were synthesized by incipient wetness impregnation and their physicochemical characteristics were studied using various methods (inductively coupled plasma optical emission spectrometry, thermal analysis coupled with mass spectrometry, low-temperature nitrogen adsorption, X-ray diffraction and structural analysis, scanning electron microscopy, and Raman spectroscopy). It was found that M/CNTs (M = Ce, Сu, Mo) are the mesoporous materials consisting of carbon nanotubes with deposited СeO2, Сu2O/Cu or МоО3/MoO2 particles, respectively. The dispersion of supported species and their deposition uniformity improve in the series Сu < Се < Мо. The type of metal was shown to affect thermal stability as well as the textural and structural properties of the samples. The thermal stability of materials increases in the series Ce < Cu ≈ Mo, which is caused by different redox properties of the metals and also by the composition of products of the metal precursor decomposition. It is promising to use the developed materials as the catalysts for deep purification of diesel fraction components from sulfur compounds.
References
(1). Ecology and economy: dynamics of air pollution ahead of ratification of the Paris Agreement [Bulletin of current trends in the Russian economy 57 (2019) (in Russian). Electronic resource. Access mode: URL
(2). Technical regulation of the Customs Union «On requirements for automobile and aviation gasoline, diesel and marine fuel, jet fuel and fuel oil» ТР ТС 013/2011 (as amended on December 19, 2019) [Electronic resource]. Access mode: URL
(3). A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today 153 (2010) 1‒68. Crossref DOI: https://doi.org/10.1016/j.cattod.2010.05.011
(4). J.N.D. de Leon., C.R. Kumar, J. Antúnez-García, S. Fuentes-Moyado, Catalysts 9 (2019) 87. Crossref DOI: https://doi.org/10.3390/catal9010087
(5). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199–255. Crossref DOI: https://doi.org/10.1080/01614940.2011.596426
(6). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref DOI: https://doi.org/10.1134/S0023158417010128
(7). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu. Kinet. Catal. 56 (2015) 466–475. Crossref DOI: https://doi.org/10.1134/S0023158415040205
(8). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu. Chemistry for Sustainable Development 23 (2015) 459–467.
(9). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A.V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem. Tech. J. 17 (2015) 119–128. Crossref DOI: https://doi.org/10.18321/ectj202
(10). Patent US 8906227B2. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(11). Patent US 8920635B2. Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(12). US Patent application US 2013/0026072A1. Сatalytic compositions useful in removal of sulfur compounds from gaseos hydrocarbons, processes for making these and uses thereof. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(13). US Patent application US 2016/14/987141. Methods for gas phase oxidative desulphurization of hydrocarbons using CuZnAl catalysts promoted with group VIB metal oxides. Koseoglu, Yaming Jin, Z.R. Ismagilov, S.A. Yashnik, A.V.Salnikov, M.A. Kerzhentsev, V.N. Parmon.
(14). International Application WO2013116338 A1. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.
(15). M.N. Hossain, H.C. Park, H.S. Choi, Catalysts 9 (2019) 229. Crossref DOI: https://doi.org/10.3390/catal9030229
(16). W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, W.N.A.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78–84. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.04.004
(17). T. Guo, W. Jiang, Y. Ruana, L. Dong, H. Liu, H. Li, W. Zhu, H. Li, Colloid. Surface. A 537 (2018) 243–249. Crossref DOI: https://doi.org/10.1016/j.colsurfa.2017.10.016
(18). K.-G. Haw, W.A.W.A. Bakar, R. Ali, J.-F. Chong, A.A.A. Kadir, Fuel Process. Technol. 91 (2010) 1105–1112. Crossref DOI: https://doi.org/10.1016/j.fuproc.2010.03.021
(19). N.M. Meman, B. Zarenezhad, A. Rashidi, Z. Hajjar, E. Esmaeili, J. Ind. Eng. Chem. 22 (2015) 179–184. Crossref DOI: https://doi.org/10.1016/j.jiec.2014.07.008
(20). B. Zapata, F. Pedraza, M.A. Valenzuela, Catal. Today 106 (2005) 219–221. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.07.134
(21). L.C. Caero, E. Hernandez, F. Pedraza, F. Murrieta, Catal. Today 107–108 (2005) 564– 569. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.07.017
(22). F.-L. Yu, C.-Y. Liu, B. Yuan, C.-X. Xie, S.-T. Yu, Catal. Commun. 68 (2015) 49–52. Crossref DOI: https://doi.org/10.1016/j.catcom.2015.04.029
(23). J.T. Sampanthar, H. Xiao, H. Dou, T.Y. Nah, X. Rong, W.P. Kwan, Appl. Catal. B. 63 (2006) 85–93. Crossref DOI: https://doi.org/10.1016/j.apcatb.2005.09.007
(24). E.V. Rakhmanov, D. Jinyuan, O.A. Fedorova, A.V. Tarakanova, A.V. Anisimov, Petrol. Chem. 51 (2011) 216–221. Crossref DOI: https://doi.org/10.1134/S0965544111020101
(25). А. Corma, P. Concepcio, M. Boronat, M.J. Sabater, J. Navas, M.J. Yacaman, E. Larios, A. Posadas, M.A. Lo´pez-Quintela, D. Buceta, E. Mendoza, G Guilera, A. Mayoral, Nat. Chem. 5 (2013) 775–781. Crossref DOI: https://doi.org/10.1038/nchem.1721
(26). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref DOI: https://doi.org/10.1039/C3GC41106K
(27). Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175–1181. Crossref DOI: https://doi.org/10.1039/C6GC02894B
(28). CNT series Taunit [Electronic resource]. Access mode: URL
(29). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem. Tech. J. 21 (2019) 291–302. Crossref DOI: https://doi.org/10.18321/ectj886
(30). E.V. Matus, L.M. Khitsova, O.S. Efimova, S.A. Yashnik, N.V. Shikina, Z.R. Ismagilov, Eurasian Chem. Tech. J. 21 (2019) 303–316. Crossref DOI: https://doi.org/10.18321/ectj887
(31). C.A. Strydom, C.P.J. van Vuuren, Journal of Thermal Analysis 32 (1987) 157–160. Crossref DOI: https://doi.org/10.1007/BF01914558
(32). J. Paulik, F. Paulik, M. Arnold, Journal of Thermal Analysis 34 (1988) 1455–1466. Crossref DOI: https://doi.org/10.1007/BF01914370
(33). M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Bios. 10 (2015) 635–641.
(34). A. Biedunkiewicz, M. Krawczyk, U. Gabriel- Polrolniczak, P. Figiel, J. Therm. Anal. Calorim. 116 (2014) 715–726. Crossref DOI: https://doi.org/10.1007/s10973-013-3582-5
(35). G. Ciembroniewicz, R. Dziembaj, R. Kalicki, Journal of Thermal Analysis 27 (1983) 125–138. Crossref DOI: https://doi.org/10.1007/BF01907328
(36). R.A. Di Leo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref DOI: https://doi.org/10.1063/1.2712152
(37). Deniz Cakir. Enhanced Raman signatures on copper based-materials. Université Montpellier, 2017. English. 179 p.
(38). M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 822–826. Crossref DOI: https://doi.org/10.1039/b107046k