The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions

Authors

  • Z. R. Ismagilov Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • E. V. Matus Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • O. S. Efimova Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • L. M. Khitsova Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • A. N. Popova Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • A. P. Nikitin Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia
  • S. A. Sozinov Federal Research Center of Coal and Coal Chemistry SB RAS, 18, Sovetsky ave., Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj954

Keywords:

Carbon nanomaterials, Metal nanoparticles, Catalyst, Oxidative desulfurization

Abstract

Metal-carbon materials M/CNTs (M = Ce, Сu, Mo) were synthesized by incipient wetness impregnation and their physicochemical characteristics were studied using various methods (inductively coupled plasma optical emission spectrometry, thermal analysis coupled with mass spectrometry, low-temperature nitrogen adsorption, X-ray diffraction and structural analysis, scanning electron microscopy, and Raman spectroscopy). It was found that M/CNTs (M = Ce, Сu, Mo) are the mesoporous materials consisting of carbon nanotubes with deposited СeO2, Сu2O/Cu or МоО3/MoO2 particles, respectively. The dispersion of supported species and their deposition uniformity improve in the series Сu < Се < Мо. The type of metal was shown to affect thermal stability as well as the textural and structural properties of the samples. The thermal stability of materials increases in the series Ce < Cu ≈ Mo, which is caused by different redox properties of the metals and also by the composition of products of the metal precursor decomposition. It is promising to use the developed materials as the catalysts for deep purification of diesel fraction components from sulfur compounds.

References

(1). Ecology and economy: dynamics of air pollution ahead of ratification of the Paris Agreement [Bulletin of current trends in the Russian economy 57 (2019) (in Russian). Electronic resource. Access mode: URL

(2). Technical regulation of the Customs Union «On requirements for automobile and aviation gasoline, diesel and marine fuel, jet fuel and fuel oil» ТР ТС 013/2011 (as amended on December 19, 2019) [Electronic resource]. Access mode: URL

(3). A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today 153 (2010) 1‒68. Crossref

(4). J.N.D. de Leon., C.R. Kumar, J. Antúnez-García, S. Fuentes-Moyado, Catalysts 9 (2019) 87. Crossref

(5). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199–255. Crossref

(6). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref

(7). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu. Kinet. Catal. 56 (2015) 466–475. Crossref

(8). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Yaming, O.R. Koseoglu. Chemistry for Sustainable Development 23 (2015) 459–467.

(9). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A.V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem. Tech. J. 17 (2015) 119–128. Crossref

(10). Patent US 8906227B2. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.

(11). Patent US 8920635B2. Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.

(12). US Patent application US 2013/0026072A1. Сatalytic compositions useful in removal of sulfur compounds from gaseos hydrocarbons, processes for making these and uses thereof. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.

(13). US Patent application US 2016/14/987141. Methods for gas phase oxidative desulphurization of hydrocarbons using CuZnAl catalysts promoted with group VIB metal oxides. Koseoglu, Yaming Jin, Z.R. Ismagilov, S.A. Yashnik, A.V.Salnikov, M.A. Kerzhentsev, V.N. Parmon.

(14). International Application WO2013116338 A1. Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds. A. Bourane, O.R. Koseoglu, Z.R. Ismagilov, S.A. Yashnik, M.A. Kerzhentsev, V.N. Parmon.

(15). M.N. Hossain, H.C. Park, H.S. Choi, Catalysts 9 (2019) 229. Crossref

(16). W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, W.N.A.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78–84. Crossref

(17). T. Guo, W. Jiang, Y. Ruana, L. Dong, H. Liu, H. Li, W. Zhu, H. Li, Colloid. Surface. A 537 (2018) 243–249. Crossref

(18). K.-G. Haw, W.A.W.A. Bakar, R. Ali, J.-F. Chong, A.A.A. Kadir, Fuel Process. Technol. 91 (2010) 1105–1112. Crossref

(19). N.M. Meman, B. Zarenezhad, A. Rashidi, Z. Hajjar, E. Esmaeili, J. Ind. Eng. Chem. 22 (2015) 179–184. Crossref

(20). B. Zapata, F. Pedraza, M.A. Valenzuela, Catal. Today 106 (2005) 219–221. Crossref

(21). L.C. Caero, E. Hernandez, F. Pedraza, F. Murrieta, Catal. Today 107–108 (2005) 564– 569. Crossref

(22). F.-L. Yu, C.-Y. Liu, B. Yuan, C.-X. Xie, S.-T. Yu, Catal. Commun. 68 (2015) 49–52. Crossref

(23). J.T. Sampanthar, H. Xiao, H. Dou, T.Y. Nah, X. Rong, W.P. Kwan, Appl. Catal. B. 63 (2006) 85–93. Crossref

(24). E.V. Rakhmanov, D. Jinyuan, O.A. Fedorova, A.V. Tarakanova, A.V. Anisimov, Petrol. Chem. 51 (2011) 216–221. Crossref

(25). А. Corma, P. Concepcio, M. Boronat, M.J. Sabater, J. Navas, M.J. Yacaman, E. Larios, A. Posadas, M.A. Lo´pez-Quintela, D. Buceta, E. Mendoza, G Guilera, A. Mayoral, Nat. Chem. 5 (2013) 775–781. Crossref

(26). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref

(27). Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175–1181. Crossref

(28). CNT series Taunit [Electronic resource]. Access mode: URL

(29). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem. Tech. J. 21 (2019) 291–302. Crossref

(30). E.V. Matus, L.M. Khitsova, O.S. Efimova, S.A. Yashnik, N.V. Shikina, Z.R. Ismagilov, Eurasian Chem. Tech. J. 21 (2019) 303–316. Crossref

(31). C.A. Strydom, C.P.J. van Vuuren, Journal of Thermal Analysis 32 (1987) 157–160. Crossref

(32). J. Paulik, F. Paulik, M. Arnold, Journal of Thermal Analysis 34 (1988) 1455–1466. Crossref

(33). M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Bios. 10 (2015) 635–641.

(34). A. Biedunkiewicz, M. Krawczyk, U. Gabriel- Polrolniczak, P. Figiel, J. Therm. Anal. Calorim. 116 (2014) 715–726. Crossref

(35). G. Ciembroniewicz, R. Dziembaj, R. Kalicki, Journal of Thermal Analysis 27 (1983) 125–138. Crossref

(36). R.A. Di Leo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref

(37). Deniz Cakir. Enhanced Raman signatures on copper based-materials. Université Montpellier, 2017. English. 179 p.

(38). M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 822–826. Crossref

Downloads

Published

2020-06-30

How to Cite

Ismagilov, Z. R., Matus, E. V., Efimova, O. S., Khitsova, L. M., Popova, A. N., Nikitin, A. P., & Sozinov, S. A. (2020). The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions. Eurasian Chemico-Technological Journal, 22(2), 81–88. https://doi.org/10.18321/ectj954

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>