Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production

Authors

  • I. Z. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • E. V. Matus Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • V. V. Kuznetsov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • S. A. Yashnik Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • M. A. Kerzhentsev Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • G. Gerritsen Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • H. C.L. Abbenhuis Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • Z. R. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia; Institute of Coal Chemistry and Material Science SB RAS, pr. Sovetskiy, 18, 650000, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj497

Keywords:

POSS nanotechnology, nanomaterials, Ni nanoparticles, autothermal reforming of methane, hydrogen production

Abstract

POSS (polyhedral oligomeric silsesquioxanes) nanotechnology was applied for preparation of efficient Ni catalysts for hydrogen production through autothermal reforming of methane (ATR of CH4). The novel metal-POSS precursor [Nickel (II) ‒ Heptaisobutyl POSS (C4H9)7Si7O9(OH)O2Ni] of Ni nanoparticles was introduced into Ce0.5Zr0.5O2 support with following calcination and reduction stages of activation. The peculiarity of the genesis of Ni/SiO2/Ce0.5Zr0.5O2 nanomaterials and their characteristics versus deposition mode were studied by X-ray fluorescence spectroscopy, thermal analysis, N2 adsorption, X-ray diffraction, high-resolution transmission electron microscopy and H2 temperature-programmed reduction. The two kinds of supported Ni-containing particles were observed: highly dispersed Ni forms (1‒2 nm) and large Ni-containing particles (up to 50‒100 nm in size). It was demonstrated that the textural, structural, red-ox and, consequently, catalytic properties of ex-Ni-POSS catalysts depend on the deposition mode. The increase of a portion of difficultly reduced Ni2+ species is found upon application of intermediate calcination during Ni-POSS deposition that has detrimental effect on the activity of catalyst in ATR of CH4. The Ni/SiO2/Ce0.5Zr0.5O2 catalyst prepared by one-step Ni-POSS deposition exhibits the highest H2 yield ‒ 80% at T = 800 °C.

 

References

(1). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 33 (2008) 6804‒6839. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.08.054

(2). J. Nowotny, N.T. Veziroglu, Int. J. Hydrogen Energy 36 (2011) 13218‒13224. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.07.071

(3). C.C. Cormos, L. Petrescu, A.M. Cormos, Proceedings 24 European Symposium Computer Aided Process Engineering, Budapest, Hungary (2014) 1082‒1086.

(4). Dincer, C. Acar, Int. J. Hydrogen Energy 40 (2015) 11094‒11111. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.12.035

(5). J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal. Today 139 (2009) 244–260. Crossref DOI: https://doi.org/10.1016/j.cattod.2008.08.039

(6). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 225‒237. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2004.03.033

(7). Dincer, Int. J. Hydrogen Energy 37 (2012) 1954‒1971. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.03.173

(8). L. García, Compendium of Hydrogen Energy 83 (2015) 83‒107. Crossref DOI: https://doi.org/10.1016/B978-1-78242-361-4.00004-2

(9). Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energy 34 (2009) 8799‒8817. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2009.08.078

(10). L. Protasova, F. Snijkers, Fuel 181 (2016) 75‒93. Crossref DOI: https://doi.org/10.1016/j.fuel.2016.04.110

(11). J.O’M. Bockris, Int. J. Hydrogen Energy 38 (2013) 2579‒2588. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.12.026

(12). M. Ball, M. Wietschel, Int. J. Hydrogen Energy 34 (2009) 615‒627. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.11.014

(13). M. Balat, Int. J. Hydrogen Energy 33 (2008) 4013‒4029. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.05.047

(14). J.D. Holladay, Y. Wang, J. Power Sources 282 (2015) 602‒621. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2015.01.079

(15). Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committee, United States Department of Energy Washington, DC 20585 May 2013.

(16). R. Horn, R. Schlogl, Catal. Lett. 145 (2015) 23– 39. Crossref DOI: https://doi.org/10.1007/s10562-014-1417-z

(17). K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3 (2011) 423‒459. Crossref DOI: https://doi.org/10.1016/j.jngse.2011.03.004

(18). S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39 (2014) 1979‒1997. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.12.001

(19). T.L. LeValley, A.R. Richard, M. Fan, Int. J. Hydrogen Energy 39 (2014) 16983‒17000. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.08.041

(20). U. Izquierdo, V.L. Barrio, J.F. Cambra, J. Requies, M.B. Guemez, P.L. Arias, G. Kolb, R. Zapf, A.M. Gutierrez, J.R. Arraibi, Int. J. Hydrogen Energy 37 (2012) 7026‒7033. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.11.048

(21). V.D. Santoa, A. Gallo, A. Naldoni, M. Guidotti, R. Psaro, Catal. Today 197 (2012) 190‒205. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.07.037

(22). S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, Int. J. Hydrogen Energy 37 (2012) 15966‒15975. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.08.056

(23). D.A.J.M. Ligthart, J.A.Z. Pieterse, E.J.M. Hensen, Appl. Catal. A 405 (2011) 108‒119. Crossref DOI: https://doi.org/10.1016/j.apcata.2011.07.035

(24). G. Nahar, V. Dupont, Rec. Patents Chem. Eng. 6 (2013). 8‒42. Crossref DOI: https://doi.org/10.2174/2211334711306010003

(25). C.H. Bartholomew, Appl. Catal. A 2012 (2001) 17‒60. Crossref DOI: https://doi.org/10.1016/S0926-860X(00)00843-7

(26). J.A. Moulijn, A.E. Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3‒16. Crossref DOI: https://doi.org/10.1016/S0926-860X(00)00842-5

(27). K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. A 314 (2006) 9‒22. Crossref DOI: https://doi.org/10.1016/j.apcata.2006.07.028

(28). J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong, C. Hu, Int. J. Hydrogen Energy 36 (2011) 7094‒7104. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.02.133

(29). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394‒402. Crossref DOI: https://doi.org/10.1134/S0023158415030064

(30). S. Li, J. Gong, Chem. Soc. Rev. 43 (2014) 7245‒7256. Crossref DOI: https://doi.org/10.1039/C4CS00223G

(31). K. Fang, J. Ren, Y. Sun, J. Mol. Catal. A 229 (2005) 51–58. Crossref DOI: https://doi.org/10.1016/j.molcata.2004.10.055

(32). S. He, H. Wu, W. Yu, L. Mo, H. Lou, H. Zheng, Int. J. Hydrogen Energy 34 (2008) 839‒843. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.10.072

(33). S. He, X. Zheng, L. Mo, W. Yu, H. Wanga, Y. Luo, Mater. Res. Bull. 49 (2014) 108–113. Crossref DOI: https://doi.org/10.1016/j.materresbull.2013.08.051

(34). D. Baudouin, U. Rodemerck, F. Krumeich, A. Mallmann, R.C. Szeto, H. Ménard, L. Veyre, J.- P. Candy, P.B. Webb, C. Thieuleux, C. Copéret, J. Catal. 297 (2013) 27‒34. Crossref DOI: https://doi.org/10.1016/j.jcat.2012.09.011

(35). J. Juan-Juan, M.C. Roman-Martınez, M.J. Illan- Gomez, Appl. Catal. A 355 (2009) 27–32. Crossref DOI: https://doi.org/10.1016/j.apcata.2008.10.058

(36). J.M. García-Vargas, J.L. Valverde, A. Lucas Consuegra, B. Gómez-Monedero, P. Sánchez, F. Dorado, Appl. Catal. A 431-432 (2012) 49‒56. Crossref DOI: https://doi.org/10.1016/j.apcata.2012.04.016

(37). D. Liu, Y. Wang, D. Shi, X. Jia, X. Wang, A. Borgna, R. Lau, Y. Yang, Int. J. Hydrogen Energy 37 (2012) 10135‒10144. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.03.158

(38). S. Somacescu, M. Florea, P. Osiceanu, J.M. Cal¬deron-Moreno, C. Ghica, J.M. Serra, J. Nanopart. Res. 17 (2015) 426. Crossref DOI: https://doi.org/10.1007/s11051-015-3206-z

(39). Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Surf. Sci. 233 (2004) 58‒68. Crossref DOI: https://doi.org/10.1016/j.apsusc.2004.03.223

(40). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992‒21006. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.10.044

(41). Y. Wang, L. Wang, N. Gan, Z.Y. Lim, C. Wu, J. Peng, W.G. Wang, Int. J. Hydrogen Energy 39 (2014) 10971‒10979. DOI: https://doi.org/10.1016/j.ijhydene.2014.05.074

(42). A.J. Abreu, A.F. Lucrédio, E.M. Assaf, Fuel. Process. Technol. 102 (2012) 140‒145. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.04.030

(43). D. Li, Y. Nakagawa, K. Tomishige, Appl. Catal. A 408 (2011) 1‒24. Crossref DOI: https://doi.org/10.1016/j.apcata.2011.09.018

(44). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10‒18. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.12.007

(45). S. Gopalakrishnana, M.G. Faga, I. Miletto, S. Coluccia, G. Caputo, S. Sau, A. Giaconia, G. Berlier, Appl. Catal. B 138-139 (2013) 353‒361. Crossref DOI: https://doi.org/10.1016/j.apcatb.2013.02.036

(46). A.J. Majewski, J. Wood, W. Bujalski, Int. J. Hydrogen Energy 38 (2013) 14531‒14541. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.09.017

(47). V.M. Gonzalez-Delacruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal. 257 (2008) 307‒314. Crossref DOI: https://doi.org/10.1016/j.jcat.2008.05.009

(48). V.M. Gonzalez-Delacruz, F. Ternero, R. Pere-ñíguez, A. Caballero, J.P. Holgado, Appl. Catal. A 384 (2010) 1‒9. Crossref DOI: https://doi.org/10.1016/j.apcata.2010.05.027

(49). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A 481 (2014) 104‒115. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.04.042

(50). M.A. Naeem, A.S. Al-Fatesh, A.H. Fakeeha, A.E. Abasaeed, Int. J. Hydrogen Energy 39 (2014) 17009‒17023. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.08.090

(51). L. Zhang, X. Wang, B. Tan, U.S. Ozkan, J. Mol. Catal. A 297 (2009) 26‒34. Crossref DOI: https://doi.org/10.1016/j.molcata.2008.09.011

(52). H. Li, H. Xu, J. Wang, J. Natural. Gas Chem. 20 (2011) 1‒8. Crossref DOI: https://doi.org/10.1016/S1003-9953(10)60156-9

(53). K. Urasaki, Y. Tanpo, Y. Nagashima, R. Kikuchi, S. Satokawa, Appl. Catal. A 452 (2013) 174‒178. Crossref DOI: https://doi.org/10.1016/j.apcata.2012.06.021

(54). W. Yang, D. He, Appl. Catal. A 524 (2016) 94‒104. Crossref DOI: https://doi.org/10.1016/j.apcata.2016.06.026

(55). F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Int. J. Hydrogen Energy 39 (2014) 10454‒10466. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.05.036

(56). F. Bentaleb, M. Che, A.-C. Dubreuil, C. Thomazeau, E. Marceau, Catal. Today 235 (2014) 250‒255. Crossref DOI: https://doi.org/10.1016/j.cattod.2014.02.020

(57). R. Murugavel, P. Davis, V. Shete, Inorg. Chem. 42 (2003) 4696‒4706. Crossref DOI: https://doi.org/10.1021/ic034317m

(58). K. Wada, T. Mitsudo, Catal. Surv. Asia 9 (2005) 229‒241. Crossref DOI: https://doi.org/10.1007/s10563-005-9158-z

(59). A.J. Ward, A.F. Masters, T. Maschmeyer, Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts, 2011. P. 135‒166, In: C. Hartmann-Thompson (ed.), Applications of Polyhedral Oligomeric Silsesquioxanes, Advances in Silicon Science 3, Springer Science + Business Media B.V. Crossref DOI: https://doi.org/10.1007/978-90-481-3787-9_3

(60). N. Maxim, H.C.L. Abbenhuis, P.J. Stobbelaar, B.L. Mojet, R.A. van Santen, Phys. Chem. Chem. Phys. 1 (1999) 4473‒4477. Crossref DOI: https://doi.org/10.1039/a903684i

(61). N. Maxim, P.M.C. Magusin, P.J. Kooyman, J.H.M.C. van Wolput, R.A. van Santen, H.C.L. Abbenhuis, Chem. Mater. 13 (2001) 2958‒2964. Crossref DOI: https://doi.org/10.1021/cm010272g

(62). N. Maxim, Metal silesquioxanes as precursors to microporous metallosilicates. PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 2002. ISBN 90-386-2683-5

(63). H. Kaneko, S. Taku, Y. Tamaura, Solar Energy 85 (2011) 2321–2330. Crossref DOI: https://doi.org/10.1016/j.solener.2011.06.019

(64). A. Fina, D. Tabuani, F. Carniato, A. Frache, E. Boccaleri, G. Camino, Thermochim. Acta 440 (2006) 36‒42. Crossref DOI: https://doi.org/10.1016/j.tca.2005.10.006

(65). M.F.P. Silva, J.R. Matos, P.C. Isolani, J. Therm. Anal. Calorim. 94 (2008) 305‒311. Crossref DOI: https://doi.org/10.1007/s10973-007-8906-x

(66). A. Małecki, R. Gajerski, S. Łabuś, B. Prochowska-Klisch, K.T. Wojciechowski, J. Therm. Anal. Calorim. 60 (2000) 17‒23. Crossref DOI: https://doi.org/10.1023/A:1010155931266

(67). E. Mikuli, A. Migdał-Mikuli, R. Chyży, B. Grad, R. Dziembaj, Thermochim. Acta 370 (2001) 65‒71. Crossref DOI: https://doi.org/10.1016/S0040-6031(00)00770-X

(68). B. Jankovic, S. Mentus, D. Jelić, Physica B 404 (2010) 2263‒2269. Crossref DOI: https://doi.org/10.1016/j.physb.2009.04.024

(69). F. Pompeo, N.N. Nichio, M.G. Gonzalez, M. Montes, Catal. Today 107-108 (2005) 856–862. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.07.024

(70). G.P. Androutsopoulos, C.E. Salmas, Ind. Eng. Chem. Res. 39 (2000) 3747‒3763. Crossref DOI: https://doi.org/10.1021/ie0001624

(71). T.D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Micropor. Mesopor. Mater. 119 (2009) 290‒298. Crossref DOI: https://doi.org/10.1016/j.micromeso.2008.10.039

(72). J. Gao, J. Guo, D. Liang, Z. Hou, J. Fei, X. Zheng, Int. J. Hydrogen Energy 33 (2008) 5493‒5500. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.07.040

(73). X. Chen, A.R. Tadd, J.W. Schwank, J. Catal. 251 (2007) 374‒387. Crossref DOI: https://doi.org/10.1016/j.jcat.2007.07.031

(74). B. Li, X. Xu, S. Zhang, Int. J. Hydrogen Energy 38 (2013) 890‒900. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.10.103

(75). R.V. Wandekar, M. Ali (Basu), B.N. Wani, S.R. Bharadwaj, Mater. Chem. Phys. 99 (2006) 289‒294. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2005.10.025

(76). B. Scheffer, P. Molhoek, J.A. Moulijn, Appl. Catal. 46 (1989) 11‒30. Crossref DOI: https://doi.org/10.1016/S0166-9834(00)81391-3

(77). H. Mori, C. Wen, J. Otomo, K. Eguchi, H. Takahashi, Appl. Catal. A 245 (2003) 79‒85. Crossref DOI: https://doi.org/10.1016/S0926-860X(02)00634-8

(78). J.S. Lisboa, L.E. Terra, P.R.J. Silva, H. Saitovitch, F.B. Passos, Fuel Process. Technol. 92 (2011) 2075‒2082. Crossref DOI: https://doi.org/10.1016/j.fuproc.2011.06.011

(79). S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today 93-95 (2004) 95‒105. Crossref DOI: https://doi.org/10.1016/j.cattod.2004.06.079

(80). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzón, Catal. Today 63 (2000) 71‒85. Crossref DOI: https://doi.org/10.1016/S0920-5861(00)00447-8

(81). T. Takeguchi, S.N. Furukawa, M. Inoue, J. Catal. 202 (2001) 14‒24. Crossref DOI: https://doi.org/10.1006/jcat.2001.3249

(82). J.C. Escritori, S.C. Dantas, R.R. Soares, C.E. Hori, Catal. Commun. 10 (2009) 1090‒1094. Crossref DOI: https://doi.org/10.1016/j.catcom.2009.01.001

(83). T. Takeguchi, S.N. Furukawa, M. Inoue, K. Eguchi, Appl. Catal. A 240 (2003) 223‒233. Crossref DOI: https://doi.org/10.1016/S0926-860X(02)00449-0

(84). Q. Jing, L. Fang, H. Lou, X. Zheng, J. Rare Earths 27 (2009) 431‒436. Crossref DOI: https://doi.org/10.1016/S1002-0721(08)60265-3

Downloads

Published

25-01-2017

How to Cite

Ismagilov, I. Z., Matus, E. V., Kuznetsov, V. V., Yashnik, S. A., Kerzhentsev, M. A., Gerritsen, G., … Ismagilov, Z. R. (2017). Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production. Eurasian Chemico-Technological Journal, 19(1), 3–16. https://doi.org/10.18321/ectj497

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>