Effect of Cobalt Oxide Content on the Activity of NiO-Co2O3/γ-Al2O3 Catalyst in the Reaction of Dry Reforming of Methane to Synthesis Gas
DOI:
https://doi.org/10.18321/ectj978Keywords:
Methane, Dry reforming, Synthesis gas, Catalyst, NanophasesAbstract
The effect of cobalt oxide content on the activity of NiO-Co2O3/γ-Al2O3 catalyst was investigated in process of dry reforming of methane (DRM) to synthesis gas. It was found that among the studied catalysts the highest activity is shown by the NiO-Co2O3/ γ-Al2O3, where methane conversion is 89%. It was determined by the scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) there are oxides of Ni and Co in the form of nanosized particles on active NiO-Co2O3/γ-Al2O3 catalyst and Co-Ni alloys, formed after the reaction of DRM, the size of 17‒23 nm. Thermogravimetric Analysis (TGA)/ Differential Thermal Analysis (DTA)/ Differential Scanning Calorimetry (DSC) of catalyst showed that the highest weight loss (2.7%) is observed at a degree from 30 to 260 °C after DRM. After heating above 300 °C there is a slight increase in weight, accompanied by an exothermic effect on the DSC curve due to the gas adsorption used to purge the unit. The data indicate the absence of coke formation on NiO-Co2O3/γ-Al2O3 surface. According to TPR-H2 there are peaks at relatively low temperatures of Т1mах = 205 °C and Т2mах = 497 °C on thermally programmed reduction (TPR) TPR-Н2 spectrum of NiO-Со2О3/γ-Al2O3, which are associated with the formation of easily reducible cobalt and nickel oxides, indicating the presence of active and mobile oxygen in the catalyst. These results confirm that the activity of NiO-Co2O3/γ-Al2O3 is due to the formation of nanophases, the presence of active oxygen, and the absence of coke on the catalyst surface.
References
(1). K.Y. Koo, H.-S. Roh, U.H. Jung, W.L. Yoon, Catal. Lett. 130 (2009) 217–221. Crossref
(2). B. Abdullah, N.A.A. Ghani, D.-V.N. Vo, J. Clean. Prod. 162 (2017) 170–185. Crossref
(3). D. Schanke, A.M. Hilmen, E. Bergene, K. Kinnari, E. Rytter, E. Ådnanes, A. Holmen. Catal. Lett. 34 (1995) 269–284. Crossref
(4). J. Matos, M. Rosales, Eurasian Chem.-Technol. J.14 (2012) 5–7. Crossref
(5). J. Károlyi, M. Németh, C. Evangelisti, G. Sáfrán, Z. Schay, A. Horváth, F. Somodi, J. Ind. Eng. Chem. 58 (2018) 189–201. Crossref
(6). B. Stolze, J. Titus, S.A. Schunk, A. Milanov, E. Schwab, R. Gläser, Front. Chem. Sci. Eng. 10 (2016) 281–293. Crossref
(7). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, L.K. Myltykbaeva, M.M. Telbaeva, A.V. Mironenko, M.M. Mambetova, Zh. Kassenova, Russ. J. Phys. Chem. 94 (2020) 880‒882. Crossref
(8). D. Pakhare, J. Spivey, Chem. Soc. Rev. 43 (2014) 7813‒7837. Crossref
(9). J. Matos, C. Paredes, M. Rosales, Eurasian Chem.-Technol. J. 14 (2012) 9‒11. Crossref
(10). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67. Crossref
(11). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref
(12). I.Z. Ismagilov, E.V. Matus, M.A. Kerzhentsev, I.P. Prosvirin, R.M. Navarro, J.L.G. Fierro, G. Gerritsen, E. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 17 (2015) 105–118. Crossref
(13). M.E. Dry, Catal. Today 71 (2002) 227–241. Crossref
(14). D. Leckel, Energ. Fuel. 23 (2009) 2342–2358. Crossref
(15). S. Sharma, S.K. Ghoshal, Renew. Sustain. Energy. Rev. 43 (2015) 1151–1158. Crossref
(16). A. Caballero, P.J. Perez, Chem. Soc. Rev. 42 (2013) 8809–8820. Crossref
(17). Y. Wang, L. Yao, S. Wang, D. Mao, C. Hu, Fuel Process. Technol. 169 (2018) 199–206. Crossref
(18). W. Ahmad, F.L. Chan, A. Hoadley, H. Wang, A. Tanksale, Appl. Catal. B-Environ. 269 (2020) 118765. Crossref
(19). Y. Wei, P.E. de Jongh, M.L.M. Bonati, D. J. Law, G.J. Sunley, K.P. de Jong, Appl. Catal. A-Gen. 504 (2015) 211–219. Crossref
(20). K. Rouibah, A. Barama, R. Benrabaa, J. Guerrero-Caballero, T. Kane, R.-N. Vannier, A. Rubbens, A. Lofberg, Int. J. Hydrogen Energ. 42 (2017) 29725–29734. Crossref
(21). A.Yu. Krylova, M.V. Kulikova, A.L. Lapidus. Solid Fuel Chem. 48 (2014) 230–233. Crossref
(22). K. Díaz, V. García, J. Matos, Fuel 86 (2007) 1337–1344. Crossref
(23). V. Mordkovich, L. Sineva, E. Kulchakovskaya, E. Asalieva, Catalysis in Industry [Kataliz v promyshlennosti] 15 (2015) 23–45 (in Russ.). Crossref
(24). T. Yabe, Y. Sekine, Fuel Process. Technol. 181 (2018) 187‒198. Crossref
(25). J.H. Lee, J.Y. Do, N.-K. Park, M.W. Seo, H.-J. Ryu, J.-P. Hong, Y.S. Kim, S.K. Kim, M. Kang, J. Photoch. Photobio. A 364 (2018) 219‒232. Crossref
(26). J. Matos, K. Díaz, V. García, T.C. Cordero, J.L. Brito, Catal. Lett. 109 (2006) 163‒169. Crossref
(27). H. Zhong, G. Yao, X. Cui, P. Yan, X. Wang, F. Jin, Chem. Eng. J. 357 (2019) 421‒427. Crossref
(28). C. Anil, J.M. Modak, G. Madras, Mol. Catal. 484 (2020) 110805. Crossref
(29). E. Frecha, D. Torres, A. Pueyo, I. Suelves, J.L. Pinilla, Appl. Catal. A-Gen. 585 (2019) 117182. Crossref
(30). M. Kathe, A. Empfield, P. Sandvik, C. Fryer, Y. Zhang, E. Blair, L.-S. Fan, Energy Environ. Sci. 10 (2017) 1345‒1349. Crossref
(31). J. Matos, M. Rosales, R. Demir-Cakan, M.M. Titirici, Appl. Catal. A-Gen. 386 (2010) 140‒146. Crossref
(32). M. Feyzi, A. Hassankhani, J. Nat. Gas Chem. 20 (2011) 677–686. Crossref
(33). A. Moniri, M. Rezaei, S. M. Alavi, J. Nat. Gas Chem. 19 (2010) 638–641. Crossref
(34). F. Wang, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi, Appl. Catal. B-Environ. 235 (2018) 26–35. Crossref
(35). K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang, K. Tomishige, Appl. Catal. B-Environ. 239 (2018) 324–333. Crossref
(36). K. Bu, S. Kuboon, J. Deng, H. Li, T. Yan, G. Chen, L. Shi, D. Zhang, Appl. Catal. B-Environ. 252 (2019) 86–97. Crossref
(37). K. Dossumov, Y.G. Yergaziyeva, L.K. Myltykbayeva, M.M. Telbayeva, Eurasian Chem.-Technol. J. 20 (2018) 131–136. Crossref
(38). K. Dossumov, G.Ye. Yergaziyeva, L.K. Myltykbayeva, N.A. Asanov, Theor. Exp. Chem. 52 (2016) 119–122. Crossref
(39). A.N. Popova, Coke Chem. 60 (2017) 361–365. Crossref
(40). W.-J. Jang, J.-O. Shim, H.-M. Kim, S.-Y. Yoo, H.-S. Roh, Catal. Today 324 (2019) 15–26. Crossref
(41). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M.Telbayeva, M.M. Mambetova, L.K. Myltykbayeva, Z.M. Kassenova, Chem. Pap. 74 (2020) 373‒388. Crossref
(42). K. Dossumov, G.E. Ergazieva, L.K. Myltykbaeva, M.M. Telbaeva, A.T. Batyrbaev, Theor. Exp. Chem. 55 (2019) 137‒142. Crossref
(43). A. Klyushina, K. Pacultová, K. Karásková, K. Jirátová, M. Ritz, D. Fridrichová, A. Volodarskaja, L. Obalová, J. Mol. Catal. A: Chem. 425 (2016) 237–247. Crossref
(44). P. van Helden, F. Prinsloo, J.-A. van den Berg, B. Xaba, W. Erasmus, M. Claeys, J. van de Loosdrecht, Catal. Today 342 (2020) 88–98. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.