Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 2. Catalytic Activity

Authors

  • M. A. Kerzhentsev Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • E. V. Matus Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia; Novosibirsk State Technical University, pr. K. Marksa 20, 630073 Novosibirsk, Russia
  • I. Z. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • O. B. Sukhova Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • P. Bharali Tezpur University, Napaam, Tezpur - 784 028 Assam, India
  • Z. R. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia; Institute of Coal Chemistry and Material Science FRC CCC SB RAS, pr. Sovetskiy 18, 650000 Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj762

Keywords:

autothermal reforming, ethanol, ceria, dopant, Ni catalyst

Abstract

To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С23 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen.

References

(1). S. Bilgen, Renew. Sustain. Energy Rev. 38 (2014) 890–902. Crossref

(2). M. del P. Pablo-Romero, R. Pozo-Barajas, R.Y. Pozo-Barajas, Energ. Policy 101 (2017) 342– 352. Crossref

(3). S. Shafiee, E. Topal, Energ. Policy 37 (2009) 181–189. Crossref

(4). N. Abas, A. Kalair, N. Khan, Futures 69 (2015) 31–49. Crossref

(5). S. Schimpf, F. Sturm, V. Correa, B. Bodo, C. Keane, The world of raw materials 2050: Scoping future dynamics in raw materials through scenarios, Energy Procedia 125 (2017) 6–13. Crossref

(6). O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renew. Sustain. Energy Rev. 39 (2014) 748–764. Crossref

(7). C. Manochio, B.R. Andrade, R.P. Rodriguez, B.S. Moraes, Renew. Sustain. Energy Rev. 80 (2017) 743–755. Crossref

(8). R.M. Navarro, M.A. Peña, J.L.G. Fierro, Chem. Rev. 107 (2007) 3952–3991. Crossref

(9). J. Sun, Y. Wang, ACS Catal. 4 (2014) 1078– 1090. Crossref

(10). R. Chaubey, S. Sahu, O.O. James, S. Maity, Renew. Sustain. Energy Rev. 23 (2013) 443– 462. Crossref

(11). G.A. Deluga, Science 303 (2004) 993–997. Crossref

(12). L. V. Mattos, G. Jacobs, B.H. Davis, F.B. Noronha, Chem. Rev. 112 (2012) 4094–4123. Crossref

(13). D. Li, X. Li, J. Gong, Chem. Rev. 116 (2016) 11529–11653. Crossref

(14). Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay, Renew. Sustain. Energy Rev. 74 (2017) 89–103. Crossref

(15). M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energ. 32 (2007) 3238–3247. Crossref

(16). D. Zanchet, J.B.O. Santos, S. Damyanova, J.M.R. Gallo, J.M.C. Bueno, ACS Catal. 5 (2015) 3841–3863. Crossref

(17). A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energ. Fuels 19 (2005) 2098–2106. Crossref

(18). T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Renew. Sustain. Energ. Rev. 44 (2015) 132–148. Crossref

(19). A. Gutierrez, R. Karinen, S. Airaksinen, R. Kaila, A.O.I. Krause, Int. J. Hydrogen Energ. 36 (2011) 8967–8977. Crossref

(20). C.-C. Hung, S.-L. Chen, Y.-K. Liao, C.-H. Chen, J.-H. Wang, Int. J. Hydrogen Energ. 37 (2012) 4955–4966. Crossref

(21). R. Trane-Restrup, S. Dahl, A.D. Jensen, Int. J. Hydrogen Energ. 38 (2013) 15105–15118. Crossref

(22). O. Akdim, W. Cai, V. Fierro, H. Provendier, A. van Veen, W. Shen, C. Mirodatos, Top. Catal. 51 (2008) 22–38. Crossref

(23). E. Moretti, L. Storaro, A. Talon, S. Chitsazan, G. Garbarino, G. Busca, E. Finocchio, Fuel 153 (2015) 166–175. Crossref

(24). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energ. 39 (2014) 20992–21006. Crossref

(25). Z.R. Ismagilov, E. V Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today (2018) 0–1. Crossref

(26). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref

(27). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref

(28). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref

(29). N. Mota, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 41 (2016) 19373–19381. Crossref

(30). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 19 (2017) 3–16. Crossref

(31). P. Biswas, D. Kunzru, Int. J. Hydrogen Energ. 32 (2007) 969–980. Crossref

(32). X. Han, Y. Yu, H. He, W. Shan, Int. J. Hydrogen Energ. 38 (2013) 10293–10304. Crossref

(33). L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, Int. J. Hydrogen Energ. 34 (2009) 5049–5060. Crossref

(34). S.C. Dantas, K.A. Resende, C.N. Ávila-Neto, F.B. Noronha, J.M.C. Bueno, C.E. Hori, Int. J. Hydrogen Energ. 41 (2016) 3399–3413. Crossref

(35). H. Jiang, H. Li, H. Xu, Y. Zhang, Fuel Process. Technol. 88 (2007) 988–995. Crossref

(36). T. Mondal, K.K. Pant, A.K. Dalai, Int. J. Hydrogen Energ. 40 (2015) 2529–2544. Crossref

(37). M. Espitia-Sibaja, M. Muñoz, S. Moreno, R. Molina, Fuel 194 (2017) 7–16. Crossref

(38). A.E. Galetti, M.F. Gomez, L.A. Arrua, M.C. Abello, Appl. Catal. A Gen. 408 (2011) 78–86. Crossref

Downloads

Published

2018-12-21

How to Cite

Kerzhentsev, M. A., Matus, E. V., Ismagilov, I. Z., Sukhova, O. B., Bharali, P., & Ismagilov, Z. R. (2018). Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 2. Catalytic Activity. Eurasian Chemico-Technological Journal, 20(4), 293–300. https://doi.org/10.18321/ectj762

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>