Control of Ni/Ce1-xMxOy catalyst properties via the selection of dopant M = Gd, La, Mg Part 1. Physicochemical characteristics

Authors

  • M.A Kerzhentsev
  • E. V. Matus Boreskov Institute of Catalysis SB RAS
  • I. Z. Ismagilov Boreskov Institute of Catalysis SB RAS
  • O. B. Sukhova Boreskov Institute of Catalysis SB RAS
  • P. Bharali Tezpur University
  • Z. R. Ismagilov Institute of Coal Chemistry and Material Science FRC CCC SB RAS

DOI:

https://doi.org/10.18321/ectj761

Keywords:

ceria, dopant, metal-support interaction, Ni catalyst, reforming

Abstract

To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С23 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen.

References

(1). S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 9 (2016) 3314–3347. Crossref DOI: https://doi.org/10.1039/C6EE02002J

(2). Z.R. Ismagilov, E. V Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today (2018) 0–1. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.06.035

(3). R. Amin, B. Liu, Z.B. Huang, Y.C. Zhao, Int. J. Hydrogen Energy 41 (2016) 807–819. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2015.10.063

(4). H. Li, H. Xu, J. Wang, J. Nat. Gas Chem. 20 (2011) 1–8. Crossref DOI: https://doi.org/10.1016/S1003-9953(10)60156-9

(5). Z. Alipour, M. Rezaei, F. Meshkani, Fuel 129 (2014) 197–203. Crossref DOI: https://doi.org/10.1016/j.fuel.2014.03.045

(6). G. Nahar, V. Dupont, Sustain. Energy Rev. 32 (2014) 777–796. Crossref DOI: https://doi.org/10.1016/j.rser.2013.12.040

(7). Z. Wei, J. Sun, Y. Li, A.K. Datye, Y. Wang, Chem. Soc. Rev. 41 (2012) 7994. Crossref DOI: https://doi.org/10.1039/c2cs35201j

(8). J. Requies, V.L. Barrio, J.F. Cambra, M.B. Güemez, P.L. Arias, V. La Parola, M.A. Peña, J.L.G. Fierro, Fuel 87 (2008) 3223–3231. Crossref DOI: https://doi.org/10.1016/j.fuel.2008.05.004

(9). C. Pirez, W. Fang, M. Capron, S. Paul, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Appl. Catal. A Gen. 518 (2016) 78–86. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.10.035

(10). S.C. Dantas, K.A. Resende, C.N. Ávila-Neto, F.B. Noronha, J.M.C. Bueno, C.E. Hori, Int. J. Hydrogen Energy 41 (2016) 3399–3413. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2015.12.164

(11). A.C. Furtado, C.G. Alonso, M.P. Cantão, N.R.C. Fernandes-Machado, Int. J. Hydrogen Energy. 36 (2011) 9653–9662. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.05.063

(12). H. V. Fajardo, E. Longo, D.Z. Mezalira, G.B. Nuernberg, G.I. Almerindo, A. Collasiol, L.F.D. Probst, I.T.S. Garcia, N.L. V Carreño, Environ. Chem. Lett. 8 (2010) 79–85. Crossref DOI: https://doi.org/10.1007/s10311-008-0195-5

(13). T.S. Moraes, R.C. Rabelo Neto, M.C. Ribeiro, L.V. Mattos, M. Kourtelesis, S. Ladas, X. Verykios, F.B. Noronha, Appl. Catal. B Environ. 181 (2016) 754–768. Crossref DOI: https://doi.org/10.1016/j.apcatb.2015.08.044

(14). M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 32 (2007) 1462– 1471. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2006.10.025

(15). M. Muñoz, S. Moreno, R. Molina, Int. J. Hydrogen Energy 39 (2014) 10074–10089. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.04.131

(16). O. Akdim, W. Cai, V. Fierro, H. Provendier, A. van Veen, W. Shen, C. Mirodatos, Top. Catal. 51 (2008) 22–38. Crossref DOI: https://doi.org/10.1007/s11244-008-9122-z

(17). S.Q. Chen, Y. Liu, Int. J. Hydrogen Energy 34 (2009) 4735–4746. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2009.03.048

(18). F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Int. J. Hydrogen Energy 39 (2014) 10454–10466. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.05.036

(19). R. Trane-Restrup, S. Dahl, A.D. Jensen, Int. J. Hydrogen Energy 38 (2013) 15105–15118. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.09.027

(20). M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy 32 (2007) 3238–3247. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2007.04.038

(21). P. Osorio-Vargas, N.A. Flores-González, R.M. Navarro, J.L.G. Fierro, C.H. Campos, P. Reyes, Catal. Today 259 (2016) 27–38. Crossref DOI: https://doi.org/10.1016/j.cattod.2015.04.037

(22). J.A. Farmer, C.T. Campbell, Science 329 (2010) 933–936. Crossref DOI: https://doi.org/10.1126/science.1191778

(23). R. Pérez-Hernández, A. Gutiérrez-Martínez, J. Palacios, M. Vega-Hernández, V. Rodríguez- Lugo, Int. J. Hydrogen Energy 36 (2011) 6601– 6608. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.02.064

(24). X. Han, Y. Yu, H. He, J. Zhao, Y. Wang, J. Power Sources 238 (2013) 57–64. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2013.03.032

(25). W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, J. Solid State Chem. 184 (2011) 3014–3020. Crossref DOI: https://doi.org/10.1016/j.jssc.2011.09.018

(26). J. Paier, C. Penschke, J. Sauer, Chem. Rev. 113 (2013) 3949–3985. Crossref DOI: https://doi.org/10.1021/cr3004949

(27). F.L.S. Carvalho, Y.J.O. Asencios, A.M.B. Rego, E.M. Assaf, Appl. Catal. A Gen. 483 (2014) 52– 62. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.06.027

(28). X. Han, Y. Yu, H. He, W. Shan, Int. J. Hydrogen Energy 38 (2013) 10293–10304. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.05.137

(29). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.12.007

(30). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20969–20983. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.10.044

(31). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394–402. Crossref DOI: https://doi.org/10.1134/S0023158415030064

(32). N. Mota, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 41 (2016) 19373–19381. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2016.05.029

(33). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref DOI: https://doi.org/10.1134/S0023158417050160

(34). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 19 (2017) 3–16. Crossref DOI: https://doi.org/10.18321/ectj497

(35). M.A. Kerzhentsev, E.V. Matus, I.Z. Ismagilov, V.A. Ushakov, O.A. Stonkus, T.V. Larina, G.S. Kozlova, P. Bharali, Z.R. Ismagilov, J. Struct. Chem. 58 (2017) 133–141. Crossref DOI: https://doi.org/10.1134/S002247661701019X

(36). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.04.042

(37). B. Zhang, D. Li, X. Wang, Catal. Today 158 (2010) 348–353. Crossref DOI: https://doi.org/10.1016/j.cattod.2010.04.019

(38). R.O. Fuentes, R.T. Baker, J. Power Sources. 186 (2009) 268–277. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2008.09.119

(39). S. Sakka, H. Kozuka, Handbook of sol-gel science and technology, Vol. 1, Sol-gel processing, 2005.

(40). M. Rezaei, S.M. Alavi, S. Sahebdelfar, Z.F. Yan, J. Porous Mater. 16 (2009) 497–505. Crossref DOI: https://doi.org/10.1007/s10934-008-9224-9

(41). J. Zhang, C. Ke, H. Wu, J. Yu, J. Wang, Y. Wang, J. Alloys Compd. 718 (2017) 85–91. Crossref DOI: https://doi.org/10.1016/j.jallcom.2017.05.073

(42). C. Peng, Z. Zhang, Ceram. Int. 33 (2007) 1133– 1136. Crossref DOI: https://doi.org/10.1016/j.ceramint.2006.03.004

(43). W. Gong, R. Zhang, Z. Chen, Trans. Nonferrous Met. Soc. China. 21 (2011) 2671–2676. Crossref DOI: https://doi.org/10.1016/S1003-6326(11)61109-6

(44). M.F. Wilkes, P. Hayden, A.K. Bhattacharya, J. Catal. 219 (2003) 305–309. Crossref DOI: https://doi.org/10.1016/S0021-9517(03)00046-0

(45). M. Chen, H. Zheng, C. Shi, R. Zhou, X. Zheng, J. Mol. Catal. A Chem. 237 (2005) 132–136. Crossref DOI: https://doi.org/10.1016/j.molcata.2005.04.038

(46). V.K. Nguyen, J.H. Park, C.H. Shin, React. Kinet. Mech. Catal. 107 (2012) 157–165. Crossref DOI: https://doi.org/10.1007/s11144-012-0451-3

(47). J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.H. Chin, J. Catal. 238 (2006) 430–440. Crossref DOI: https://doi.org/10.1016/j.jcat.2006.01.001

(48). F. Wang, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Catal. Today 281 (2017) 295–303. Crossref DOI: https://doi.org/10.1016/j.cattod.2016.03.055

(49). G. Xiao, S. Li, H. Li, L. Chen, Microporous Mesoporous Mater. 120 (2009) 426–431. Crossref DOI: https://doi.org/10.1016/j.micromeso.2008.12.015

(50). D. Li, X. Li, J. Gong, Chem. Rev. 116 (2016) 11529–11653. Crossref DOI: https://doi.org/10.1021/acs.chemrev.6b00099

(51). X. Yao, C. Tang, Z. Ji, Y. Dai, Y. Cao, F. Gao, L. Dong, Y. Chen, Catal. Sci. Technol. 3 (2013) 688–698. Crossref DOI: https://doi.org/10.1039/C2CY20610B

(52). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon, Catal. Today 63 (2000) 71–85. Crossref DOI: https://doi.org/10.1016/S0920-5861(00)00447-8

(53). P. Biswas, D. Kunzru, Int. J. Hydrogen Energy 32 (2007) 969–980. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2006.09.031

(54). G.T. Wurzler, R.C. Rabelo-Neto, L.V. Mattos, M.A. Fraga, F.B. Noronha, Appl. Catal. A Gen. 518 (2016) 115–128. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.11.020

Downloads

Published

21-12-2018

How to Cite

Kerzhentsev, M., Matus, E. V., Ismagilov, I. Z., Sukhova, O. B., Bharali, P., & Ismagilov, Z. R. (2018). Control of Ni/Ce1-xMxOy catalyst properties via the selection of dopant M = Gd, La, Mg Part 1. Physicochemical characteristics. Eurasian Chemico-Technological Journal, 20(4), 283–291. https://doi.org/10.18321/ectj761

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>