Control of Ni/Ce1-xMxOy catalyst properties via the selection of dopant M = Gd, La, Mg Part 1. Physicochemical characteristics
DOI:
https://doi.org/10.18321/ectj761Keywords:
ceria, dopant, metal-support interaction, Ni catalyst, reformingAbstract
To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С2-С3 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen.
References
(1). S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 9 (2016) 3314–3347. Crossref DOI: https://doi.org/10.1039/C6EE02002J
(2). Z.R. Ismagilov, E. V Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today (2018) 0–1. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.06.035
(3). R. Amin, B. Liu, Z.B. Huang, Y.C. Zhao, Int. J. Hydrogen Energy 41 (2016) 807–819. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2015.10.063
(4). H. Li, H. Xu, J. Wang, J. Nat. Gas Chem. 20 (2011) 1–8. Crossref DOI: https://doi.org/10.1016/S1003-9953(10)60156-9
(5). Z. Alipour, M. Rezaei, F. Meshkani, Fuel 129 (2014) 197–203. Crossref DOI: https://doi.org/10.1016/j.fuel.2014.03.045
(6). G. Nahar, V. Dupont, Sustain. Energy Rev. 32 (2014) 777–796. Crossref DOI: https://doi.org/10.1016/j.rser.2013.12.040
(7). Z. Wei, J. Sun, Y. Li, A.K. Datye, Y. Wang, Chem. Soc. Rev. 41 (2012) 7994. Crossref DOI: https://doi.org/10.1039/c2cs35201j
(8). J. Requies, V.L. Barrio, J.F. Cambra, M.B. Güemez, P.L. Arias, V. La Parola, M.A. Peña, J.L.G. Fierro, Fuel 87 (2008) 3223–3231. Crossref DOI: https://doi.org/10.1016/j.fuel.2008.05.004
(9). C. Pirez, W. Fang, M. Capron, S. Paul, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Appl. Catal. A Gen. 518 (2016) 78–86. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.10.035
(10). S.C. Dantas, K.A. Resende, C.N. Ávila-Neto, F.B. Noronha, J.M.C. Bueno, C.E. Hori, Int. J. Hydrogen Energy 41 (2016) 3399–3413. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2015.12.164
(11). A.C. Furtado, C.G. Alonso, M.P. Cantão, N.R.C. Fernandes-Machado, Int. J. Hydrogen Energy. 36 (2011) 9653–9662. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.05.063
(12). H. V. Fajardo, E. Longo, D.Z. Mezalira, G.B. Nuernberg, G.I. Almerindo, A. Collasiol, L.F.D. Probst, I.T.S. Garcia, N.L. V Carreño, Environ. Chem. Lett. 8 (2010) 79–85. Crossref DOI: https://doi.org/10.1007/s10311-008-0195-5
(13). T.S. Moraes, R.C. Rabelo Neto, M.C. Ribeiro, L.V. Mattos, M. Kourtelesis, S. Ladas, X. Verykios, F.B. Noronha, Appl. Catal. B Environ. 181 (2016) 754–768. Crossref DOI: https://doi.org/10.1016/j.apcatb.2015.08.044
(14). M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 32 (2007) 1462– 1471. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2006.10.025
(15). M. Muñoz, S. Moreno, R. Molina, Int. J. Hydrogen Energy 39 (2014) 10074–10089. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.04.131
(16). O. Akdim, W. Cai, V. Fierro, H. Provendier, A. van Veen, W. Shen, C. Mirodatos, Top. Catal. 51 (2008) 22–38. Crossref DOI: https://doi.org/10.1007/s11244-008-9122-z
(17). S.Q. Chen, Y. Liu, Int. J. Hydrogen Energy 34 (2009) 4735–4746. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2009.03.048
(18). F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Int. J. Hydrogen Energy 39 (2014) 10454–10466. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.05.036
(19). R. Trane-Restrup, S. Dahl, A.D. Jensen, Int. J. Hydrogen Energy 38 (2013) 15105–15118. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.09.027
(20). M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy 32 (2007) 3238–3247. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2007.04.038
(21). P. Osorio-Vargas, N.A. Flores-González, R.M. Navarro, J.L.G. Fierro, C.H. Campos, P. Reyes, Catal. Today 259 (2016) 27–38. Crossref DOI: https://doi.org/10.1016/j.cattod.2015.04.037
(22). J.A. Farmer, C.T. Campbell, Science 329 (2010) 933–936. Crossref DOI: https://doi.org/10.1126/science.1191778
(23). R. Pérez-Hernández, A. Gutiérrez-Martínez, J. Palacios, M. Vega-Hernández, V. Rodríguez- Lugo, Int. J. Hydrogen Energy 36 (2011) 6601– 6608. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.02.064
(24). X. Han, Y. Yu, H. He, J. Zhao, Y. Wang, J. Power Sources 238 (2013) 57–64. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2013.03.032
(25). W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, J. Solid State Chem. 184 (2011) 3014–3020. Crossref DOI: https://doi.org/10.1016/j.jssc.2011.09.018
(26). J. Paier, C. Penschke, J. Sauer, Chem. Rev. 113 (2013) 3949–3985. Crossref DOI: https://doi.org/10.1021/cr3004949
(27). F.L.S. Carvalho, Y.J.O. Asencios, A.M.B. Rego, E.M. Assaf, Appl. Catal. A Gen. 483 (2014) 52– 62. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.06.027
(28). X. Han, Y. Yu, H. He, W. Shan, Int. J. Hydrogen Energy 38 (2013) 10293–10304. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.05.137
(29). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.12.007
(30). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20969–20983. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.10.044
(31). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394–402. Crossref DOI: https://doi.org/10.1134/S0023158415030064
(32). N. Mota, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 41 (2016) 19373–19381. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2016.05.029
(33). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref DOI: https://doi.org/10.1134/S0023158417050160
(34). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 19 (2017) 3–16. Crossref DOI: https://doi.org/10.18321/ectj497
(35). M.A. Kerzhentsev, E.V. Matus, I.Z. Ismagilov, V.A. Ushakov, O.A. Stonkus, T.V. Larina, G.S. Kozlova, P. Bharali, Z.R. Ismagilov, J. Struct. Chem. 58 (2017) 133–141. Crossref DOI: https://doi.org/10.1134/S002247661701019X
(36). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.04.042
(37). B. Zhang, D. Li, X. Wang, Catal. Today 158 (2010) 348–353. Crossref DOI: https://doi.org/10.1016/j.cattod.2010.04.019
(38). R.O. Fuentes, R.T. Baker, J. Power Sources. 186 (2009) 268–277. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2008.09.119
(39). S. Sakka, H. Kozuka, Handbook of sol-gel science and technology, Vol. 1, Sol-gel processing, 2005.
(40). M. Rezaei, S.M. Alavi, S. Sahebdelfar, Z.F. Yan, J. Porous Mater. 16 (2009) 497–505. Crossref DOI: https://doi.org/10.1007/s10934-008-9224-9
(41). J. Zhang, C. Ke, H. Wu, J. Yu, J. Wang, Y. Wang, J. Alloys Compd. 718 (2017) 85–91. Crossref DOI: https://doi.org/10.1016/j.jallcom.2017.05.073
(42). C. Peng, Z. Zhang, Ceram. Int. 33 (2007) 1133– 1136. Crossref DOI: https://doi.org/10.1016/j.ceramint.2006.03.004
(43). W. Gong, R. Zhang, Z. Chen, Trans. Nonferrous Met. Soc. China. 21 (2011) 2671–2676. Crossref DOI: https://doi.org/10.1016/S1003-6326(11)61109-6
(44). M.F. Wilkes, P. Hayden, A.K. Bhattacharya, J. Catal. 219 (2003) 305–309. Crossref DOI: https://doi.org/10.1016/S0021-9517(03)00046-0
(45). M. Chen, H. Zheng, C. Shi, R. Zhou, X. Zheng, J. Mol. Catal. A Chem. 237 (2005) 132–136. Crossref DOI: https://doi.org/10.1016/j.molcata.2005.04.038
(46). V.K. Nguyen, J.H. Park, C.H. Shin, React. Kinet. Mech. Catal. 107 (2012) 157–165. Crossref DOI: https://doi.org/10.1007/s11144-012-0451-3
(47). J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.H. Chin, J. Catal. 238 (2006) 430–440. Crossref DOI: https://doi.org/10.1016/j.jcat.2006.01.001
(48). F. Wang, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Catal. Today 281 (2017) 295–303. Crossref DOI: https://doi.org/10.1016/j.cattod.2016.03.055
(49). G. Xiao, S. Li, H. Li, L. Chen, Microporous Mesoporous Mater. 120 (2009) 426–431. Crossref DOI: https://doi.org/10.1016/j.micromeso.2008.12.015
(50). D. Li, X. Li, J. Gong, Chem. Rev. 116 (2016) 11529–11653. Crossref DOI: https://doi.org/10.1021/acs.chemrev.6b00099
(51). X. Yao, C. Tang, Z. Ji, Y. Dai, Y. Cao, F. Gao, L. Dong, Y. Chen, Catal. Sci. Technol. 3 (2013) 688–698. Crossref DOI: https://doi.org/10.1039/C2CY20610B
(52). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon, Catal. Today 63 (2000) 71–85. Crossref DOI: https://doi.org/10.1016/S0920-5861(00)00447-8
(53). P. Biswas, D. Kunzru, Int. J. Hydrogen Energy 32 (2007) 969–980. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2006.09.031
(54). G.T. Wurzler, R.C. Rabelo-Neto, L.V. Mattos, M.A. Fraga, F.B. Noronha, Appl. Catal. A Gen. 518 (2016) 115–128. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.11.020
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.