Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen
DOI:
https://doi.org/10.18321/ectj676Keywords:
supercapacitors; carbon nanotubes; modification; nitrogen; electrochemical propertiesAbstract
Composites of the type “nitrogen-containing carbon coating – single-walled carbon nanotubes” were obtained by the treatment of single-walled carbon nanotubes (SWCNT) in a gaseous 40%NH3-1%C2H2-C2H4 mixture at temperatures 600–750 °C. Single-walled carbon nanotubes etched in aqua regia (SWCNTet) and doped with nitrogen (N-SWCNT) were studied by XPS, electron microscopy and IR spectroscopy. Various oxygen-containing functional groups were found to reside on the surface of initial SWCNTet. Upon treatment of SWCNTet in 40%NH3-1%С2Н2-C2H4, polymerization and condensation of hydrocarbons resulted in the formation of a thin nitrogen-containing carbon coating. Specific capacitance per a weight of initial and nitrogen-doped carbon nanotubes in an aqueous electrolyte with 1 M H2SO4 was measured. Specific capacitance of carbon electrodes was found to change symbately with the content of nitrogen-containing functional groups on the SWCNT surface.
References
2. A. Burke, J. of Power Sources 91 (1) (2000) 37–50. <a href="https://doi.org/10.1016/S0378-7753(00)00485-7">Crossref</a><br />
3. J.R. Miller, P. Simon, Science 321 (5889) (2008) 651–652. <a href="https://doi.org/10.1126/science.1158736">Crossref</a><br />
4. M. Sevilla, L. Yu, L. Zhao, C.O. Ania, M.-M. Titiricic, ACS Sustainable Chem. Eng 2 (2014) 1049‒1055. <a href="https://doi.org/10.1021/sc500069h">Crossref</a><br />
5. S. Maldonado, S. Morin, K.J. Stevenson, Carbon 44 (2006) 1429‒1437. <a href="https://doi.org/10.1016/j.carbon.2005.11.027">Crossref</a><br />
6. V. Thirumal, A. Pandurangan, R. Jayavel, S.R. Krishnamoorthi, R. Ilangovan, Curr. Appl. Phys. 16. (2016) 816‒825. <a href="https://doi.org/10.1016/j.cap.2016.04.018">Crossref</a><br />
7. R.A. Buyanov, Catalyst Coking. Nauka, Novosibirsk, 1983, p. 208 (in Russian).
8. V.V. Chesnokov, A.S. Chichkan, Int. J. Hydrogen Energ. 34 (2009) 2979‒2985. <a href="https://doi.org/0.1016/j.ijhydene.2009.01.074 ">Crossref</a><br />
9. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie, Minnesota, USA, 1992.
10. G.Yu. Simenyuk, A.V. Puzynin, O.Yu. Podyacheva, A.V. Salnikov, Yu.A. Zakharov, Z.R. Ismagilov Eurasian Chemico- Technological Journal 19 (2017) 201‒208. <a href="http://doi.org/10.18321/ectj663">Crossref</a><br />
11. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 798–828. <a href="https://doi.org/10.1039/C1CS15060J">Crossref</a><br />
12. R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L.L. Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop- Gericke, and R. Schlögl, ACS Catal. 5 (2015) 2740–2753. <a href="https://doi.org/10.1021/acscatal.5b00094">Crossref</a><br />
13. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, and J.M. Jiménez-Mateos, J. Am. Chem. Soc. 118 (34) (1996) 8071–8076. <a href="https://doi.org/10.1021/ja960338m">Crossref</a><br />
14. J.A. Fern´andez, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, J. Power Sources 175 (1) (2008) 675–679. <a href="https://doi.org/10.1016/j.jpowsour.2007.09.042">Crossref</a><br />
15. A. Burke, Electrochim. Acta 53 (3) (2007) 1083– 1091. <a href="https://doi.org/10.1016/j.electacta.2007.01.011">Crossref</a><br />