Dry Reforming of Methane on Carriers and Oxide Catalysts to Synthesis-Gas


  • K. Dossumov The Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • Y. G. Yergaziyeva The Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • L. K. Myltykbayeva al-Farabi Kazakh National University, al-Farabi str., 71, Almaty, 050040, Kazakhstan
  • M. M. Telbayeva The Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan




methane, carbon dioxide, synthesis-gas, conversion, carrier, catalyst


The catalytic activity of carriers: θ‒Al2O3, γ‒Al2O3, 5A, 4A, 3A and 13X and the oxides of metals of variable valency ‒ NiO, La2O3, CuO, MoO3, MgO, V2O5, WO3, CoO, Cr2O3, ZnO, ZrO2, CeO2, Fe2O3, supported on the effective carrier γ‒Al2O3 by the method of capillary impregnation of the support with solutions of nitric salts of metals were investigated in the process of carbon dioxide conversion of methane (DRM). The optimal technological regimes for the process were: the reaction temperature -800 °C, the space velocity of the initial reactants ‒ 1500 h-1 with a methane to carbon dioxide ratio equal to 1. It was found that among the studied catalysts the highest activity is shown by the NiO/γ‒Al2O3 catalyst, where the yields of hydrogen and carbon monoxide reaches 45.4 and 42.4% by volume, respectively, when methane conversion is 89%. The XRF method showed that the content of alumina and nickel oxide after the reaction remained unchanged at 96.7 and 3.0%, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray scattering (XRS) determined that nickel-containing NiO/γ‒Al2O3 catalyst form nickel nanoparticles (6.4‒10 and 50‒150 nm) and a uniform their distribution on the surface of the carrier takes place. These physical chemical characteristics have a positive effect on the activity of NiO/γ‒Al2O3 catalyst in the process of carbon dioxide conversion of methane to synthesis gas.


(1). N. El Hassan, M.N. Kaydouh, H. Geagea, H. El Zein, K. Jabbour, S. Casale, H. El Zakhem, P. Massiani, Appl. Catal. A-Gen. 520 (2016) 114‒121. Crossref

(2). K. Dossumov, G.Y. Yergazyieva, L.K. Myltykbayeva, U. Suyunbaev, N.A. Asanov, A. M. Gyulmaliev, Coke and Chemistry 58 (5) (2015) 178‒183.

(3). K. Dossumov, G.Ye. Yergaziyeva, L.K. Myltykbayeva, N.A. Asanov, Theor. Exp. Chem. 52 (2016) 119‒122. Crossref

(4). J. Yoo, Y. Bang, S.J. Han, S. Park, J.H. Song, I.K. Song, J. Mol. Catal. A-Chem. 410 (2015) 74–80. Crossref

(5). D. Pashchenko, Energy 143 (2018) 478–487. Crossref

(6). F. Polo-Garzon, M. He, D.A. Bruce, J. Catal. 333 (2016) 59–70. Crossref

(7). X. Zhang, C. Yang, Y. Zhang, Y. Xu, S. Shang, Y. Yin, Int. J. Hydrogen Energ. 40 (2015) 16115– 16126. Crossref

(8). R. Debek, M.E. Galvez, F. Launay, M. Motak, T. Grzybek, P.D. Costa, Int. J. Hydrogen Energ. 41 (2016) 11616–11623. Crossref

(9). Farshad Farshchi Tabrizi, Seyed Amir Hossein Seyed Mousavi, Energy Convers. Manage. 103 (2015) 1065–1077. Crossref

(10). I. Iglesias, G. Baronetti, F. Marino, Int. J. Hydrogen Energ. 42 (2017) 29735–29744. Crossref

(11). J. Chen, L. Yan, W. Song, D. Xu, Int. J. Hydrogen Energ. 42 (2017) 664–680. Crossref

(12). D. Czylkowski, B. Hrycak, M. Jasinski, M. Dors, J. Mizeraczyk, Energy 113 (2016) 653– 661. Crossref

(13). M. Luneau, E. Gianotti, F.C. Meunier, C. Mirodatos, E. Puzenat, Y. Schuurman, N. Guilhaume, Appl. Catal. B-Environ. 203 (2017) 289–299. Crossref

(14). J. Cihlar Jr, R. Vrba, K. Castkova, J. Cihlar, Int. J. Hydrogen Energ. 42 (2017) 19920–19934. Crossref

(15). M. Abdus Salam, Bawadi Abdullah, Mater. Chem. Phys. 188 (2017) 18–23. Crossref

(16). H.E. Figen, S.Z. Baykara, Int. J. Hydrogen Energ. 40 (2015) 7439–7451. Crossref

(17). D. Kim, J.H. Jeon, W. Lee, J. Lee, K.-S. Ha, Int. J. Hydrogen Energ. 42 (2017) 24744–24756. Crossref

(18). Milena de Santana Santos, Raimundo Crisóstomo Rabelo Neto, Fábio Bellot Noronha, Pascal Bargiela, Maria da Graça Carneiro da Rocha, Carlo Resinic, Enrique Carbó-Argibay, Roger Fréty, Soraia Teixeira Brandão, Catal. Today 299 (2018) 229–241. Crossref

(19). J. Károlyi, M. Németh, C. Evangelisti, G. Sáfrán, Z. Schay, A. Horváth, F. Somodi, J. Ind. Eng. Chem. 58 (2018) 189–201. Crossref

(20). Yee Jie Wong, Mei Kee Koh, Mehrnoush Khavarian, Abdul Rahman Mohamed, Int. J. Hydrogen Energ. 42 (2017) 28363–28376. Crossref

(21). G. Aldashukurova, A. Mironenko, N. Shikina, S. Yashnik, Z. Ismagilov, Chemical Engineering Transactions 25 (2011) 63-68. Crossref

(22). Z. Taherian, M. Yousefpour, M. Tajally, B. Khoshandam, Int. J. Hydrogen Energ. 42 (2017) 24811-24822. Crossref

(23). Y. Lou, M. Steib, Q. Zhang, K. Tiefenbacher, A. Horváth, A. Jentys, Y. Liu, J.A. Lercher, J. Catal. 356 (2017) 147–156. Crossref

(24). K. Rouibah, A. Barama, R. Benrabaa, J. Guerrero-Caballero, T. Kane, R.-N. Vannier, A. Rubbens, A. Lofberg, Int. J. Hydrogen Energ. 42 (2017) 29725–29734. Crossref

(25). Y. Wang, L. Yao, S. Wang, D. Mao, C. Hu, Fuel Process. Technol. 169 (2018) 199–206. Crossref

(26). S.A. Tungatarova, G. Xanthopoulou, K. Karanasios, T.S. Baizhumanova, M. Zhumabek, G. Kaumenova, Chemical Engineering Transactions 61 (2017) 1921–1926. Crossref

(27). E.D. Bartolomeo, F. Basoli, I. Luisetto, S. Tuti, F. Zurlo, Z. Salehi, S. Licoccia, Appl. Catal. B-Environ. 191 (2016) 1–7. Crossref

(28). A. Al-Fatesh, Journal of King Saud University – Engineering Sciences 27 (2015) 101–107. Crossref

(29). G. D. Chukin, Structure of Aluminium Oxide and Catalysts of Hydrodesulfurization. Mechanisms of Reactions (Paladin Press, LLC “Printa”, Moscow, 2010), p. 288 (in Russian).




How to Cite

Dossumov, K., Yergaziyeva, Y. G., Myltykbayeva, L. K., & Telbayeva, M. M. (2018). Dry Reforming of Methane on Carriers and Oxide Catalysts to Synthesis-Gas. Eurasian Chemico-Technological Journal, 20(2), 131–136. https://doi.org/10.18321/ectj691




Most read articles by the same author(s)