Effect of Preparation Method on the Activity of Fe2O3-NiO/γ-Al2O3 Catalyst in Decomposition of Methane

Authors

  • G. Yergaziyeva Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan
  • N. Makayeva Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan
  • M. Anissova Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan
  • K. Dossumov Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan
  • M. Mambetova Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan
  • Z. Shaimerden al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan
  • A. Niyazbaeva al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan
  • E. Akkazin al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1435

Keywords:

Decomposition, Methane, Catalyst, Hydrogen, Graphene-like carbon

Abstract

The effect of method preparation on the activity of Fe2O3-NiO/γ-Al2O3 catalyst was investigated in process decomposition of methane. Fe2O3-NiO/γ-Al2O3 catalyst was prepared by impregnation and solution combustion methods. The samples were characterized by X-ray phase analysis (XRD), temperature-programmed hydrogen reduction (TPR-H2), BET and Raman spectroscopy. It has been shown that the method of preparation plays an important role in regulating the textural and morphological properties of catalysts and provides a difference in their catalytic activity. The synthesis of the Fe2O3-NiO/γ-Al2O3 catalyst by the solution combustion method, in comparison with the capillary impregnation method, leads to the formation of a large amount of FeNi and FeAl2O4 solid solutions, which ensured good catalytic activity at high temperatures. The Fe2O3-NiO/γ-Al2O3 catalyst synthesized by the solution combustion method demonstrated good activity with a hydrogen yield of 52% within 150 min of the reaction without any deactivation. According to the results of Raman spectroscopy, graphene-like carbon was obtained on the surface of the catalysts. On the catalyst of Fe2O3-NiO/γ-Al2O3 (СI) synthesized by capillary impregnation, 4‒5 layer graphene on Fe2O3-NiO/γ-Al2O3 (SC)-6-7 layer graphene is formed.

References

(1). D.D.T. Ferraren-De Cagalitan, M.L.S. Abundo, Renew. Sust. Energy Rev. 151 (2021) 111413. Crossref

(2). G.E. Ergazieva, N. Makayeva, Z. Shaimerden, S.O. Soloviev, М. Telbayeva, Е. Akkazin, F. Ahmetova, Bull. Chem. React. Eng. Catal. 17 (2022). Crossref

(3). H.F. Abbas, W.M.A. Wan Daud, Int. J. Hydrogen Energy 35 (2010) 1160–1190. Crossref

(4). Z. Fan, W. Weng, J. Zhou, D. Gu, W. Xiao, J. Energy Chem. 58 (2021) 415–430. Crossref

(5). K. Murata, M. Inaba, M. Saito, I. Takahara, N. Mimura, J. Jpn. Petrol. Inst. 46 (2003). Crossref

(6). A.S. Al-Fatesh, A.A. Ibrahim, A.M. AlSharekh, F.S. Alqahtani, S.O. Kasim, A.H. Fakeeha, Egypt. J. Pet. 27 (2018) 1221‒1225. Crossref

(7). J. Chen, X. Zhou, L. Cao, Y. Li, Stud. Surf. Sci. Catal. 147 (2004) 73‒78. Crossref

(8). J.L. Pinilla, R. Utrilla, R.K. Karn, I. Suelves, M.J. Lazaro, R. Moliner, A.B. Garcia, J.N. Rouzaud, Int. J. Hydrogen Energy 36 (2011) 7832‒7843. Crossref

(9). L.B. Avdeeva, T.V. Reshetenko, Z.R. Ismagilov, V.A. Likholobov, Appl. Catal. A: Gen. 228 (2002) 53‒63. Crossref

(10). D. Torres, J.L. Pinilla, M.J. Lazaro, R. Moliner, I. Suelves, Int. J. Hydrogen Energy 39 (2014) 3698‒3709. Crossref

(11). M. Pudukudy, Z. Yaakob, Z.S. Akmal, Appl. Surf. Sci. 330 (2015) 4185‒430. Crossref

(12). G. Yergaziyeva, N. Makayeva, A. Abdisattar, M. Yeleuov, S. Soloviev, M. Anissova, A. Taurbekov, K. Dossumov, E. Akkazin, C. Daulbayev, Chem. Pap. (2022). Crossref

(13). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M. Mambetova, Z. Kassenova, Russ. J. Phys. Chem. 94 (2020) 880–882. Crossref

(14). G. Yergaziyeva, K. Dossumov, М. Mambetova, Р.Y. Strizhak, H. Kurokawa, B. Baizhomartov, Chem. Eng. Technol. 44 (2021) 1890‒1899. Crossref

(15). C.H. Campos, P. Osorio-Vargas, N. Flores- González, J.L.G. Fierro, P. Reyes, Catal. Lett. 146 (2016) 433–441. Crossref

(16). S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today 93–95 (2004) 95–105. Crossref

(17). A. Horváth, M. Németh, A. Beck, B. Maróti, G. Sáfrán, G. Pantaleo, L.F. Liotta, A.M. Venezia, V. La Parola, Appl. Catal. A: Gen. 621 (2021) 118174. Crossref

(18). J. Zhang, L. Jin, Y. Li, H. Hu, Int. J. Hydrogen Energy 38 (2013) 3937–3947. Crossref

(19). S.O. Soloviev, I.V. Gubareni, S.M. Orlyk, Theor. Exp. Chem. 54 (2018) 293–315. Crossref

(20). H. Nishii, D. Miyamoto, Y. Umeda, H. Hamaguchi, M. Suzuki, T. Tanimoto, Appl. Surf. Sci. 473 (2019) 291–297. Crossref

(21). Y. Yu, F. Fu, L. Shang, Y. Cheng, Z. Gu, Y. Zhao, Adv. Mater. 29 (2017) 1605765. Crossref

(22). A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6 (2006) 2667‒2673. Crossref

(23). E. Sallah, W. Al-Shatty, C. Pleydell-Pearce, A.J. London, C. Smith, Carbon Trends 8 (2022) 100174. Crossref

(24). N.K. Memon, S.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.-M. Goncalves, B.H. Kear, Y. Jaluria, E.Y. Andrei, M. Chhowalla, Carbon 49 (2011) 5064–5070. Crossref

(25). U. Kalsoom, M.S. Rafique, S. Shahzadi, K. Fatima, N.R. ShaheeN, Mater. Sci.-Poland 35 (2018) 687–693. Crossref

(26). M. Yeleuov, C. Seidl, T. Temirgaliyeva, A. Taurbekov, N. Prikhodko, B. Lesbayev, F. Sultanov, C. Daulbayev, S. Kumekov, Energies 13 (2020) 4943. Crossref

Downloads

Published

2022-10-10

How to Cite

Yergaziyeva, G., Makayeva, N., Anissova, M., Dossumov, K., Mambetova, M., Shaimerden, Z., … Akkazin, E. (2022). Effect of Preparation Method on the Activity of Fe2O3-NiO/γ-Al2O3 Catalyst in Decomposition of Methane. Eurasian Chemico-Technological Journal, 24(3), 221–227. https://doi.org/10.18321/ectj1435

Issue

Section

Articles

Most read articles by the same author(s)