Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane
DOI:
https://doi.org/10.18321/ectj1492Keywords:
Catalysis, Dry reforming of methane, Diatomite, Modifying additive, Methane conversion, SyngasAbstract
The effect of modifying additive (La2О3) on the activity of Ni-Co oxides was studied for the dry reforming of methane (DRM). The catalysts were prepared by impregnation of the granulated diatomite (D) and characterized by SEM, EDX, H2-TPR, XRD, and AES. It is shown that the addition of 1.5 wt.% La2O3 into the Ni-Co/D composition leads to an increase in the activity of the catalyst, providing a methane conversion that is close under thermodynamic equilibrium conditions in the temperature range of 700‒850 °С. The highest activity is achieved at T = 850 °C, the conversion of methane is 96%, and carbon dioxide is 92%. The addition of lanthanum oxide to the Ni-Co/D composition led to an increase in catalyst stability; after testing in the DRM reaction for 360 min, the deactivation coefficient for methane was 3.4%, and for carbon dioxide 2.5%. While significant deactivation is observed for Ni-Co/D, the deactivation coefficient for methane is 19%, and for carbon dioxide 36%. Many characterization results (SEM, H2-TPR, and XRD) confirm that Ni-Co-La/D has abundant surface oxygen and the presence of spinel structures that contribute to the reactivity of CH4 and CO2, which positively affect its activity.
References
(1). C. He, S. Wu, L. Wang, J. Zhang, J. Photochem. Photobiol. 51 (2022) 100468. Crossref
(2). A. Ranjekar, G. Yadav, J. Indian. Chem. Soc. 98 (2021) 100002. Crossref
(3). S. Wang, G. Lu, Appl. Catal. A: Gen. 169 (1998) 271280. Crossref
(4). K. Dossumov, G.E. Ergazieva, L.K. Myltykbaeva, M.M. Telbaeva, et al., Theor. Exp. Chem. 55 (2019) 137–142. Crossref
(5). K. Sutthiumporn, S. Kawi, Int. J. Hydrog. Energy 36 (2011) 14435–14446. Crossref
(6). B. Pholjaroen, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat, J. Ind. Eng. Chem. 15 (2009) 488–497. Crossref
(7). J. Xu, W. Zhou, J. Wang, Z. Li, et al., Chinese J. Catal. 30 (2009) 1076–1084. Crossref
(8). H.-S. Roh, K.-W. Jun, Catal. Surv. Asia 12 (2008) 239–252. Crossref
(9). B. Adama, R. Ahmed, S. Shomefun, Int. J. Chem. Eng. 2 (2015) 46–52. URL
(10). V. Sandoval-Bohórquez, E. Morales-Valencia, C. Castillo-Araiza, L. Ballesteros-Rueda, et al., ACS Catal. 11 (2021) 11478–11493. Crossref
(11). U. Guharoy, T.R. Reina, J. Liu, Q. Sun, et al., J. CO2 Util. 53 (2021) 101728. Crossref
(12). W.J. Jang, J.O. Shim, H.M. Kim, S.Y. Yoo, et al., Catal. Today 324 (2019) 15–26. Crossref
(13). Y. Wang, L. Yao, S. Wang, D. Mao, et al., Fuel Process. Technol. 169 (2018) 199–206. Crossref
(14). N. Tran, Q. Le, N. Cuong, T. Nguyen, et al., J. Energy Inst. 93 (2020) 1571–1580. Crossref
(15). A. Movasati, S.M. Alavi, G. Mazloom, Fuel 236 (2019) 1254. Crossref
(16). C. Jiang, E. Loisel, D.A. Cullen, J.A. Dorman, K.M. Dooley, J. Catal. 393 (2021) 215–229. Crossref
(17). L. Baharudin, N. Rahmat, N.H. Othman, N. Shah, et al., J. CO2 Util. 61 (2022) 102050Crossref
(18). Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, et al., ChemPhysChem 18 (2017) 3117–3134. Crossref
(19). J. Zhang, H. Wang, A. Dalai, J. Catal. 249 (2007) 300–310. Crossref
(20). L.K. Myltykbayeva, G.E. Ergazieva, M.M. Telbayeva, Z.R. Ismagilov, et al. Eurasian Chem.-Technol. J. 22 (2020) 187–195. Crossref
(21). J. Wang, G. Zhang, G. Li, J. Liu, et al., Int. J. Hydrog. Energy 47 (2022) 7823–7835. Crossref
(22). H. Wang, X. Dong, T. Zhao, H. Yu, et al., Appl. Catal. B: Environ. 245 (2019) 302–313. Crossref
(23). A. Tsoukalou, Q. Imtiaz, S. Kim, P. Abdala, et al., J. Catal. 343 (2016) 208–214. Crossref
(24). G. Valderrama, A. Kiennemann, M. Goldwasser, Catal. Today 133 (2008) 142–148. Crossref
(25). H.U. Hambali, A.A. Jalil, A.A. Abdulrasheed, T.J. Siang, et al., Int. J. Hydrog. Energy 47 (2022) 30759. Crossref
(26). S. Khajeh Talkhoncheh, M. Haghighi, J. Nat. Gas. Eng. 23 (2015) 16–25. Crossref
(27). K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, et al., J. Chem. Eng. 264 (2015) 351–358. Crossref
(28). E. Kutelia, K. Dossumov, G. Yergaziyeva, D. Gventsadze, et al., Adv. Mater. Lett. 13 (2022) 22041709. Crossref
(29). X. Li, Q. Hu, Y. Yang, J. Chen, et al., J. Rare Earths 26 (2008) 864–868. Crossref
(30). L. Xiancai, L. Shuigen, Y. Yifeng, W. Min, et al., Catal. Lett. 118 (2007) 59–63. Crossref
(31). M. Yusuf, M. Beg, M. Ubaidullah, S.F. Shaikh, et al., Int. J. Hydrog. Energy 47 (2021) 42150– 42159. Crossref
(32). B. Wang, X. Lu, S.T.B. Lundin, H. Kong, et al., Energy Convers. Manag. 268 (2022) 116050. Crossref
(33). A. Serrano-Lotina, L. Daza, Int. J. Hydrog. Energy 39 (2014) 4089. Crossref
(34). C. Gennequin, M. Safariamin, S. Siffert, A. Aboukaïs, et al., Catal. Today 176 (2011) 139–143. Crossref
(35). S.T. Phan, A.R. Sane, B.R. Vasconcelos, A. Nzihou, et al., Appl. Catal. B: Environ. 224 (2018) 310–321. Crossref
(36). S.N.A. Rosli, S.Z. Abidin, O.U. Osazuw, X. Fan, et al., J. CO2 Util. 63 (2022) 102109. Crossref
(37). C.Q. Pham, A.N.T. Cao, P.T.T. Phuong, L.K.H. Pham, et al., J. Energy Inst. 105 (2022) 314–322. Crossref
(38). W. Shan, M. Luo, P. Ying, W. Shen, et al., Appl. Catal. A-Gen. 246 (2003) 1–9. Crossref
(39). N. Dai, S. Yi, X. Zhang, L. Feng, et al., Appl. Surf. Sci. 607 (2023) 154886. Crossref
(40). I. Luisetto, S. Tuti, E. Di Bartolomeo, Int. J. Hydrog. Energy 37 (2012) 15992–15999. Crossref
(41). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M. Telbayeva, et al., Chem. Pap. 74 (2020) 373–388. Crossref
(42). M. Zhang, X. Sui, X. Zhang, M. Niu, et al., Appl. Surf. Sci. 600 (2022) 154040. Crossref
(43). G. Cheng, Z. Cai, X. Song, X. Chen, et al., Appl. Catal. B: Environ. 304 (2022) 120988. Crossref
(44). Y. Fang, X. Wang, Y. Chen, L. Dai, J. Zhejiang Univ. Sci. A. 21 (2020) 74–84. Crossref
(45). S. Liang, T. Cai, J. Yuan, Q. Tong, et al., J. Mol. Catal. 533 (2022) 112762. Crossref
(46). K. Dosumov, G. Ergazieva, D. Churina, M. Tel’baeva, Russ. J. Phys. Chem. 88 (2014) 1806–1808. Crossref
(47). S. Gao, Y. Li, W. Guo, X. Ding, et al., J. Mol. Catal. 533 (2022) 112766. Crossref A.M. Haggar, A.E. Awadallah, A.A. Aboul-Enein, G.H. Sayed, Mater. Chem. Phys. 288 (2022) 126386. Crossref
(48). Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, Chem. Mater. 12(2) (2000) 331–335. Crossref
(49). Y. Kwon, E. Eichler, B. Mullins, J. CO2 Util. 63 (2022) 102112. Crossref
(50). H. Qiu, J. Ran, X. Huang, Z. Ou, et al., Int. J. Hydrog. Energy 47 (2022) 34066–34074. Crossref
(51). B.T. Dossumova, T.V. Shakiyeva, D. Muktaly, L.R. Sassykova, et al., ChemEngineering 6 (2022). Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.