Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane

Authors

  • G.Y. Yergaziyeva Institute of Combustion Problems, 172, Bogenbay batyr str., Almaty, Kazakhstan
  • E. Kutelia Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • K. Dossumov Institute of Combustion Problems, 172, Bogenbay batyr str., Almaty, Kazakhstan
  • D. Gventsadze Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • N. Jalabadze Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • T. Dzigrashvili Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • L. Nadaraia Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • O. Tsurtsumia Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • M.M. Anissova Institute of Combustion Problems, 172, Bogenbay batyr str., Almaty, Kazakhstan
  • M.M. Mambetova Institute of Combustion Problems, 172, Bogenbay Batyr str., Almaty, Kazakhstan
  • B. Eristavi Georgian Technical University, 7, Kostova str., Tbilisi, Georgia
  • N. Khudaibergenov Institute of Combustion Problems, 172, Bogenbay batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1492

Keywords:

Catalysis, Dry reforming of methane, Diatomite, Modifying additive, Methane conversion, Syngas

Abstract

The effect of modifying additive (La2О3) on the activity of Ni-Co oxides was studied for the dry reforming of methane (DRM). The catalysts were prepared by impregnation of the granulated diatomite (D) and characterized by SEM, EDX, H2-TPR, XRD, and AES. It is shown that the addition of 1.5 wt.% La2O3 into the Ni-Co/D composition leads to an increase in the activity of the catalyst, providing a methane conversion that is close under thermodynamic equilibrium conditions in the temperature range of 700‒850 °С. The highest activity is achieved at T = 850 °C, the conversion of methane is 96%, and carbon dioxide is 92%. The addition of lanthanum oxide to the Ni-Co/D composition led to an increase in catalyst stability; after testing in the DRM reaction for 360 min, the deactivation coefficient for methane was 3.4%, and for carbon dioxide 2.5%. While significant deactivation is observed for Ni-Co/D, the deactivation coefficient for methane is 19%, and for carbon dioxide 36%. Many characterization results (SEM, H2-TPR, and XRD) confirm that Ni-Co-La/D has abundant surface oxygen and the presence of spinel structures that contribute to the reactivity of CH4 and CO2, which positively affect its activity.

 

References

(1). C. He, S. Wu, L. Wang, J. Zhang, J. Photochem. Photobiol. 51 (2022) 100468. Crossref DOI: https://doi.org/10.1016/j.jphotochemrev.2021.100468

(2). A. Ranjekar, G. Yadav, J. Indian. Chem. Soc. 98 (2021) 100002. Crossref DOI: https://doi.org/10.1016/j.jics.2021.100002

(3). S. Wang, G. Lu, Appl. Catal. A: Gen. 169 (1998) 271280. Crossref DOI: https://doi.org/10.1016/S0926-860X(98)00017-9

(4). K. Dossumov, G.E. Ergazieva, L.K. Myltykbaeva, M.M. Telbaeva, et al., Theor. Exp. Chem. 55 (2019) 137–142. Crossref DOI: https://doi.org/10.1007/s11237-019-09605-6

(5). K. Sutthiumporn, S. Kawi, Int. J. Hydrog. Energy 36 (2011) 14435–14446. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.08.022

(6). B. Pholjaroen, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat, J. Ind. Eng. Chem. 15 (2009) 488–497. Crossref DOI: https://doi.org/10.1016/j.jiec.2009.02.003

(7). J. Xu, W. Zhou, J. Wang, Z. Li, et al., Chinese J. Catal. 30 (2009) 1076–1084. Crossref DOI: https://doi.org/10.1016/S1872-2067(08)60139-4

(8). H.-S. Roh, K.-W. Jun, Catal. Surv. Asia 12 (2008) 239–252. Crossref DOI: https://doi.org/10.1007/s10563-008-9058-0

(9). B. Adama, R. Ahmed, S. Shomefun, Int. J. Chem. Eng. 2 (2015) 46–52. URL

(10). V. Sandoval-Bohórquez, E. Morales-Valencia, C. Castillo-Araiza, L. Ballesteros-Rueda, et al., ACS Catal. 11 (2021) 11478–11493. Crossref DOI: https://doi.org/10.1021/acscatal.1c02631

(11). U. Guharoy, T.R. Reina, J. Liu, Q. Sun, et al., J. CO2 Util. 53 (2021) 101728. Crossref DOI: https://doi.org/10.1016/j.jcou.2021.101728

(12). W.J. Jang, J.O. Shim, H.M. Kim, S.Y. Yoo, et al., Catal. Today 324 (2019) 15–26. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.07.032

(13). Y. Wang, L. Yao, S. Wang, D. Mao, et al., Fuel Process. Technol. 169 (2018) 199–206. Crossref DOI: https://doi.org/10.1016/j.fuproc.2017.10.007

(14). N. Tran, Q. Le, N. Cuong, T. Nguyen, et al., J. Energy Inst. 93 (2020) 1571–1580. Crossref DOI: https://doi.org/10.1016/j.joei.2020.01.019

(15). A. Movasati, S.M. Alavi, G. Mazloom, Fuel 236 (2019) 1254. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.09.069

(16). C. Jiang, E. Loisel, D.A. Cullen, J.A. Dorman, K.M. Dooley, J. Catal. 393 (2021) 215–229. Crossref DOI: https://doi.org/10.1016/j.jcat.2020.11.028

(17). L. Baharudin, N. Rahmat, N.H. Othman, N. Shah, et al., J. CO2 Util. 61 (2022) 102050Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102050

(18). Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, et al., ChemPhysChem 18 (2017) 3117–3134. Crossref DOI: https://doi.org/10.1002/cphc.201700529

(19). J. Zhang, H. Wang, A. Dalai, J. Catal. 249 (2007) 300–310. Crossref DOI: https://doi.org/10.1016/j.jcat.2007.05.004

(20). L.K. Myltykbayeva, G.E. Ergazieva, M.M. Telbayeva, Z.R. Ismagilov, et al. Eurasian Chem.-Technol. J. 22 (2020) 187–195. Crossref DOI: https://doi.org/10.18321/ectj978

(21). J. Wang, G. Zhang, G. Li, J. Liu, et al., Int. J. Hydrog. Energy 47 (2022) 7823–7835. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.12.152

(22). H. Wang, X. Dong, T. Zhao, H. Yu, et al., Appl. Catal. B: Environ. 245 (2019) 302–313. Crossref DOI: https://doi.org/10.1016/j.apcatb.2018.12.072

(23). A. Tsoukalou, Q. Imtiaz, S. Kim, P. Abdala, et al., J. Catal. 343 (2016) 208–214. Crossref DOI: https://doi.org/10.1016/j.jcat.2016.03.018

(24). G. Valderrama, A. Kiennemann, M. Goldwasser, Catal. Today 133 (2008) 142–148. Crossref DOI: https://doi.org/10.1016/j.cattod.2007.12.069

(25). H.U. Hambali, A.A. Jalil, A.A. Abdulrasheed, T.J. Siang, et al., Int. J. Hydrog. Energy 47 (2022) 30759. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.12.214

(26). S. Khajeh Talkhoncheh, M. Haghighi, J. Nat. Gas. Eng. 23 (2015) 16–25. Crossref DOI: https://doi.org/10.1016/j.jngse.2015.01.020

(27). K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, et al., J. Chem. Eng. 264 (2015) 351–358. Crossref DOI: https://doi.org/10.1016/j.cej.2014.11.109

(28). E. Kutelia, K. Dossumov, G. Yergaziyeva, D. Gventsadze, et al., Adv. Mater. Lett. 13 (2022) 22041709. Crossref DOI: https://doi.org/10.5185/amlett.2022.041709

(29). X. Li, Q. Hu, Y. Yang, J. Chen, et al., J. Rare Earths 26 (2008) 864–868. Crossref DOI: https://doi.org/10.1016/S1002-0721(09)60022-3

(30). L. Xiancai, L. Shuigen, Y. Yifeng, W. Min, et al., Catal. Lett. 118 (2007) 59–63. Crossref DOI: https://doi.org/10.1007/s10562-007-9140-7

(31). M. Yusuf, M. Beg, M. Ubaidullah, S.F. Shaikh, et al., Int. J. Hydrog. Energy 47 (2021) 42150– 42159. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.08.021

(32). B. Wang, X. Lu, S.T.B. Lundin, H. Kong, et al., Energy Convers. Manag. 268 (2022) 116050. Crossref DOI: https://doi.org/10.1016/j.enconman.2022.116050

(33). A. Serrano-Lotina, L. Daza, Int. J. Hydrog. Energy 39 (2014) 4089. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.05.135

(34). C. Gennequin, M. Safariamin, S. Siffert, A. Aboukaïs, et al., Catal. Today 176 (2011) 139–143. Crossref DOI: https://doi.org/10.1016/j.cattod.2011.01.029

(35). S.T. Phan, A.R. Sane, B.R. Vasconcelos, A. Nzihou, et al., Appl. Catal. B: Environ. 224 (2018) 310–321. Crossref DOI: https://doi.org/10.1016/j.apcatb.2017.10.063

(36). S.N.A. Rosli, S.Z. Abidin, O.U. Osazuw, X. Fan, et al., J. CO2 Util. 63 (2022) 102109. Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102109

(37). C.Q. Pham, A.N.T. Cao, P.T.T. Phuong, L.K.H. Pham, et al., J. Energy Inst. 105 (2022) 314–322. Crossref DOI: https://doi.org/10.1016/j.joei.2022.10.004

(38). W. Shan, M. Luo, P. Ying, W. Shen, et al., Appl. Catal. A-Gen. 246 (2003) 1–9. Crossref DOI: https://doi.org/10.1016/S0926-860X(02)00659-2

(39). N. Dai, S. Yi, X. Zhang, L. Feng, et al., Appl. Surf. Sci. 607 (2023) 154886. Crossref DOI: https://doi.org/10.1016/j.apsusc.2022.154886

(40). I. Luisetto, S. Tuti, E. Di Bartolomeo, Int. J. Hydrog. Energy 37 (2012) 15992–15999. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.08.006

(41). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M. Telbayeva, et al., Chem. Pap. 74 (2020) 373–388. Crossref DOI: https://doi.org/10.1007/s11696-019-00921-8

(42). M. Zhang, X. Sui, X. Zhang, M. Niu, et al., Appl. Surf. Sci. 600 (2022) 154040. Crossref DOI: https://doi.org/10.1016/j.apsusc.2022.154040

(43). G. Cheng, Z. Cai, X. Song, X. Chen, et al., Appl. Catal. B: Environ. 304 (2022) 120988. Crossref DOI: https://doi.org/10.1016/j.apcatb.2021.120988

(44). Y. Fang, X. Wang, Y. Chen, L. Dai, J. Zhejiang Univ. Sci. A. 21 (2020) 74–84. Crossref DOI: https://doi.org/10.1631/jzus.A1900535

(45). S. Liang, T. Cai, J. Yuan, Q. Tong, et al., J. Mol. Catal. 533 (2022) 112762. Crossref DOI: https://doi.org/10.1016/j.mcat.2022.112762

(46). K. Dosumov, G. Ergazieva, D. Churina, M. Tel’baeva, Russ. J. Phys. Chem. 88 (2014) 1806–1808. Crossref DOI: https://doi.org/10.1134/S0036024414100094

(47). S. Gao, Y. Li, W. Guo, X. Ding, et al., J. Mol. Catal. 533 (2022) 112766. Crossref A.M. Haggar, A.E. Awadallah, A.A. Aboul-Enein, G.H. Sayed, Mater. Chem. Phys. 288 (2022) 126386. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2022.126386

(48). Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, Chem. Mater. 12(2) (2000) 331–335. Crossref DOI: https://doi.org/10.1021/cm990154h

(49). Y. Kwon, E. Eichler, B. Mullins, J. CO2 Util. 63 (2022) 102112. Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102112

(50). H. Qiu, J. Ran, X. Huang, Z. Ou, et al., Int. J. Hydrog. Energy 47 (2022) 34066–34074. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2022.08.014

(51). B.T. Dossumova, T.V. Shakiyeva, D. Muktaly, L.R. Sassykova, et al., ChemEngineering 6 (2022). Crossref DOI: https://doi.org/10.3390/chemengineering6050068

Downloads

Published

20-03-2023

How to Cite

Yergaziyeva, G., Kutelia, E., Dossumov, K., Gventsadze, D., Jalabadze, N., Dzigrashvili, T., … Khudaibergenov, N. (2023). Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane. Eurasian Chemico-Technological Journal, 25(1), 21–32. https://doi.org/10.18321/ectj1492

Issue

Section

Articles

Most read articles by the same author(s)