Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane
DOI:
https://doi.org/10.18321/ectj1492Keywords:
Catalysis, Dry reforming of methane, Diatomite, Modifying additive, Methane conversion, SyngasAbstract
The effect of modifying additive (La2О3) on the activity of Ni-Co oxides was studied for the dry reforming of methane (DRM). The catalysts were prepared by impregnation of the granulated diatomite (D) and characterized by SEM, EDX, H2-TPR, XRD, and AES. It is shown that the addition of 1.5 wt.% La2O3 into the Ni-Co/D composition leads to an increase in the activity of the catalyst, providing a methane conversion that is close under thermodynamic equilibrium conditions in the temperature range of 700‒850 °С. The highest activity is achieved at T = 850 °C, the conversion of methane is 96%, and carbon dioxide is 92%. The addition of lanthanum oxide to the Ni-Co/D composition led to an increase in catalyst stability; after testing in the DRM reaction for 360 min, the deactivation coefficient for methane was 3.4%, and for carbon dioxide 2.5%. While significant deactivation is observed for Ni-Co/D, the deactivation coefficient for methane is 19%, and for carbon dioxide 36%. Many characterization results (SEM, H2-TPR, and XRD) confirm that Ni-Co-La/D has abundant surface oxygen and the presence of spinel structures that contribute to the reactivity of CH4 and CO2, which positively affect its activity.
References
(1). C. He, S. Wu, L. Wang, J. Zhang, J. Photochem. Photobiol. 51 (2022) 100468. Crossref DOI: https://doi.org/10.1016/j.jphotochemrev.2021.100468
(2). A. Ranjekar, G. Yadav, J. Indian. Chem. Soc. 98 (2021) 100002. Crossref DOI: https://doi.org/10.1016/j.jics.2021.100002
(3). S. Wang, G. Lu, Appl. Catal. A: Gen. 169 (1998) 271280. Crossref DOI: https://doi.org/10.1016/S0926-860X(98)00017-9
(4). K. Dossumov, G.E. Ergazieva, L.K. Myltykbaeva, M.M. Telbaeva, et al., Theor. Exp. Chem. 55 (2019) 137–142. Crossref DOI: https://doi.org/10.1007/s11237-019-09605-6
(5). K. Sutthiumporn, S. Kawi, Int. J. Hydrog. Energy 36 (2011) 14435–14446. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.08.022
(6). B. Pholjaroen, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat, J. Ind. Eng. Chem. 15 (2009) 488–497. Crossref DOI: https://doi.org/10.1016/j.jiec.2009.02.003
(7). J. Xu, W. Zhou, J. Wang, Z. Li, et al., Chinese J. Catal. 30 (2009) 1076–1084. Crossref DOI: https://doi.org/10.1016/S1872-2067(08)60139-4
(8). H.-S. Roh, K.-W. Jun, Catal. Surv. Asia 12 (2008) 239–252. Crossref DOI: https://doi.org/10.1007/s10563-008-9058-0
(9). B. Adama, R. Ahmed, S. Shomefun, Int. J. Chem. Eng. 2 (2015) 46–52. URL
(10). V. Sandoval-Bohórquez, E. Morales-Valencia, C. Castillo-Araiza, L. Ballesteros-Rueda, et al., ACS Catal. 11 (2021) 11478–11493. Crossref DOI: https://doi.org/10.1021/acscatal.1c02631
(11). U. Guharoy, T.R. Reina, J. Liu, Q. Sun, et al., J. CO2 Util. 53 (2021) 101728. Crossref DOI: https://doi.org/10.1016/j.jcou.2021.101728
(12). W.J. Jang, J.O. Shim, H.M. Kim, S.Y. Yoo, et al., Catal. Today 324 (2019) 15–26. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.07.032
(13). Y. Wang, L. Yao, S. Wang, D. Mao, et al., Fuel Process. Technol. 169 (2018) 199–206. Crossref DOI: https://doi.org/10.1016/j.fuproc.2017.10.007
(14). N. Tran, Q. Le, N. Cuong, T. Nguyen, et al., J. Energy Inst. 93 (2020) 1571–1580. Crossref DOI: https://doi.org/10.1016/j.joei.2020.01.019
(15). A. Movasati, S.M. Alavi, G. Mazloom, Fuel 236 (2019) 1254. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.09.069
(16). C. Jiang, E. Loisel, D.A. Cullen, J.A. Dorman, K.M. Dooley, J. Catal. 393 (2021) 215–229. Crossref DOI: https://doi.org/10.1016/j.jcat.2020.11.028
(17). L. Baharudin, N. Rahmat, N.H. Othman, N. Shah, et al., J. CO2 Util. 61 (2022) 102050Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102050
(18). Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, et al., ChemPhysChem 18 (2017) 3117–3134. Crossref DOI: https://doi.org/10.1002/cphc.201700529
(19). J. Zhang, H. Wang, A. Dalai, J. Catal. 249 (2007) 300–310. Crossref DOI: https://doi.org/10.1016/j.jcat.2007.05.004
(20). L.K. Myltykbayeva, G.E. Ergazieva, M.M. Telbayeva, Z.R. Ismagilov, et al. Eurasian Chem.-Technol. J. 22 (2020) 187–195. Crossref DOI: https://doi.org/10.18321/ectj978
(21). J. Wang, G. Zhang, G. Li, J. Liu, et al., Int. J. Hydrog. Energy 47 (2022) 7823–7835. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.12.152
(22). H. Wang, X. Dong, T. Zhao, H. Yu, et al., Appl. Catal. B: Environ. 245 (2019) 302–313. Crossref DOI: https://doi.org/10.1016/j.apcatb.2018.12.072
(23). A. Tsoukalou, Q. Imtiaz, S. Kim, P. Abdala, et al., J. Catal. 343 (2016) 208–214. Crossref DOI: https://doi.org/10.1016/j.jcat.2016.03.018
(24). G. Valderrama, A. Kiennemann, M. Goldwasser, Catal. Today 133 (2008) 142–148. Crossref DOI: https://doi.org/10.1016/j.cattod.2007.12.069
(25). H.U. Hambali, A.A. Jalil, A.A. Abdulrasheed, T.J. Siang, et al., Int. J. Hydrog. Energy 47 (2022) 30759. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.12.214
(26). S. Khajeh Talkhoncheh, M. Haghighi, J. Nat. Gas. Eng. 23 (2015) 16–25. Crossref DOI: https://doi.org/10.1016/j.jngse.2015.01.020
(27). K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, et al., J. Chem. Eng. 264 (2015) 351–358. Crossref DOI: https://doi.org/10.1016/j.cej.2014.11.109
(28). E. Kutelia, K. Dossumov, G. Yergaziyeva, D. Gventsadze, et al., Adv. Mater. Lett. 13 (2022) 22041709. Crossref DOI: https://doi.org/10.5185/amlett.2022.041709
(29). X. Li, Q. Hu, Y. Yang, J. Chen, et al., J. Rare Earths 26 (2008) 864–868. Crossref DOI: https://doi.org/10.1016/S1002-0721(09)60022-3
(30). L. Xiancai, L. Shuigen, Y. Yifeng, W. Min, et al., Catal. Lett. 118 (2007) 59–63. Crossref DOI: https://doi.org/10.1007/s10562-007-9140-7
(31). M. Yusuf, M. Beg, M. Ubaidullah, S.F. Shaikh, et al., Int. J. Hydrog. Energy 47 (2021) 42150– 42159. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.08.021
(32). B. Wang, X. Lu, S.T.B. Lundin, H. Kong, et al., Energy Convers. Manag. 268 (2022) 116050. Crossref DOI: https://doi.org/10.1016/j.enconman.2022.116050
(33). A. Serrano-Lotina, L. Daza, Int. J. Hydrog. Energy 39 (2014) 4089. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.05.135
(34). C. Gennequin, M. Safariamin, S. Siffert, A. Aboukaïs, et al., Catal. Today 176 (2011) 139–143. Crossref DOI: https://doi.org/10.1016/j.cattod.2011.01.029
(35). S.T. Phan, A.R. Sane, B.R. Vasconcelos, A. Nzihou, et al., Appl. Catal. B: Environ. 224 (2018) 310–321. Crossref DOI: https://doi.org/10.1016/j.apcatb.2017.10.063
(36). S.N.A. Rosli, S.Z. Abidin, O.U. Osazuw, X. Fan, et al., J. CO2 Util. 63 (2022) 102109. Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102109
(37). C.Q. Pham, A.N.T. Cao, P.T.T. Phuong, L.K.H. Pham, et al., J. Energy Inst. 105 (2022) 314–322. Crossref DOI: https://doi.org/10.1016/j.joei.2022.10.004
(38). W. Shan, M. Luo, P. Ying, W. Shen, et al., Appl. Catal. A-Gen. 246 (2003) 1–9. Crossref DOI: https://doi.org/10.1016/S0926-860X(02)00659-2
(39). N. Dai, S. Yi, X. Zhang, L. Feng, et al., Appl. Surf. Sci. 607 (2023) 154886. Crossref DOI: https://doi.org/10.1016/j.apsusc.2022.154886
(40). I. Luisetto, S. Tuti, E. Di Bartolomeo, Int. J. Hydrog. Energy 37 (2012) 15992–15999. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2012.08.006
(41). K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M. Telbayeva, et al., Chem. Pap. 74 (2020) 373–388. Crossref DOI: https://doi.org/10.1007/s11696-019-00921-8
(42). M. Zhang, X. Sui, X. Zhang, M. Niu, et al., Appl. Surf. Sci. 600 (2022) 154040. Crossref DOI: https://doi.org/10.1016/j.apsusc.2022.154040
(43). G. Cheng, Z. Cai, X. Song, X. Chen, et al., Appl. Catal. B: Environ. 304 (2022) 120988. Crossref DOI: https://doi.org/10.1016/j.apcatb.2021.120988
(44). Y. Fang, X. Wang, Y. Chen, L. Dai, J. Zhejiang Univ. Sci. A. 21 (2020) 74–84. Crossref DOI: https://doi.org/10.1631/jzus.A1900535
(45). S. Liang, T. Cai, J. Yuan, Q. Tong, et al., J. Mol. Catal. 533 (2022) 112762. Crossref DOI: https://doi.org/10.1016/j.mcat.2022.112762
(46). K. Dosumov, G. Ergazieva, D. Churina, M. Tel’baeva, Russ. J. Phys. Chem. 88 (2014) 1806–1808. Crossref DOI: https://doi.org/10.1134/S0036024414100094
(47). S. Gao, Y. Li, W. Guo, X. Ding, et al., J. Mol. Catal. 533 (2022) 112766. Crossref A.M. Haggar, A.E. Awadallah, A.A. Aboul-Enein, G.H. Sayed, Mater. Chem. Phys. 288 (2022) 126386. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2022.126386
(48). Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, Chem. Mater. 12(2) (2000) 331–335. Crossref DOI: https://doi.org/10.1021/cm990154h
(49). Y. Kwon, E. Eichler, B. Mullins, J. CO2 Util. 63 (2022) 102112. Crossref DOI: https://doi.org/10.1016/j.jcou.2022.102112
(50). H. Qiu, J. Ran, X. Huang, Z. Ou, et al., Int. J. Hydrog. Energy 47 (2022) 34066–34074. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2022.08.014
(51). B.T. Dossumova, T.V. Shakiyeva, D. Muktaly, L.R. Sassykova, et al., ChemEngineering 6 (2022). Crossref DOI: https://doi.org/10.3390/chemengineering6050068
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eurasian Chemico-Technological Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.