Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production
DOI:
https://doi.org/10.18321/ectj497Keywords:
POSS nanotechnology, nanomaterials, Ni nanoparticles, autothermal reforming of methane, hydrogen productionAbstract
POSS (polyhedral oligomeric silsesquioxanes) nanotechnology was applied for preparation of efficient Ni catalysts for hydrogen production through autothermal reforming of methane (ATR of CH4). The novel metal-POSS precursor [Nickel (II) ‒ Heptaisobutyl POSS (C4H9)7Si7O9(OH)O2Ni] of Ni nanoparticles was introduced into Ce0.5Zr0.5O2 support with following calcination and reduction stages of activation. The peculiarity of the genesis of Ni/SiO2/Ce0.5Zr0.5O2 nanomaterials and their characteristics versus deposition mode were studied by X-ray fluorescence spectroscopy, thermal analysis, N2 adsorption, X-ray diffraction, high-resolution transmission electron microscopy and H2 temperature-programmed reduction. The two kinds of supported Ni-containing particles were observed: highly dispersed Ni forms (1‒2 nm) and large Ni-containing particles (up to 50‒100 nm in size). It was demonstrated that the textural, structural, red-ox and, consequently, catalytic properties of ex-Ni-POSS catalysts depend on the deposition mode. The increase of a portion of difficultly reduced Ni2+ species is found upon application of intermediate calcination during Ni-POSS deposition that has detrimental effect on the activity of catalyst in ATR of CH4. The Ni/SiO2/Ce0.5Zr0.5O2 catalyst prepared by one-step Ni-POSS deposition exhibits the highest H2 yield ‒ 80% at T = 800 °C.
References
(1). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 33 (2008) 6804‒6839. Crossref
(2). J. Nowotny, N.T. Veziroglu, Int. J. Hydrogen Energy 36 (2011) 13218‒13224. Crossref
(3). C.C. Cormos, L. Petrescu, A.M. Cormos, Proceedings 24 European Symposium Computer Aided Process Engineering, Budapest, Hungary (2014) 1082‒1086.
(4). Dincer, C. Acar, Int. J. Hydrogen Energy 40 (2015) 11094‒11111. Crossref
(5). J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal. Today 139 (2009) 244–260. Crossref
(6). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 225‒237. Crossref
(7). Dincer, Int. J. Hydrogen Energy 37 (2012) 1954‒1971. Crossref
(8). L. García, Compendium of Hydrogen Energy 83 (2015) 83‒107. Crossref
(9). Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energy 34 (2009) 8799‒8817. Crossref
(10). L. Protasova, F. Snijkers, Fuel 181 (2016) 75‒93. Crossref
(11). J.O’M. Bockris, Int. J. Hydrogen Energy 38 (2013) 2579‒2588. Crossref
(12). M. Ball, M. Wietschel, Int. J. Hydrogen Energy 34 (2009) 615‒627. Crossref
(13). M. Balat, Int. J. Hydrogen Energy 33 (2008) 4013‒4029. Crossref
(14). J.D. Holladay, Y. Wang, J. Power Sources 282 (2015) 602‒621. Crossref
(15). Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committee, United States Department of Energy Washington, DC 20585 May 2013.
(16). R. Horn, R. Schlogl, Catal. Lett. 145 (2015) 23– 39. Crossref
(17). K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3 (2011) 423‒459. Crossref
(18). S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39 (2014) 1979‒1997. Crossref
(19). T.L. LeValley, A.R. Richard, M. Fan, Int. J. Hydrogen Energy 39 (2014) 16983‒17000. Crossref
(20). U. Izquierdo, V.L. Barrio, J.F. Cambra, J. Requies, M.B. Guemez, P.L. Arias, G. Kolb, R. Zapf, A.M. Gutierrez, J.R. Arraibi, Int. J. Hydrogen Energy 37 (2012) 7026‒7033. Crossref
(21). V.D. Santoa, A. Gallo, A. Naldoni, M. Guidotti, R. Psaro, Catal. Today 197 (2012) 190‒205. Crossref
(22). S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, Int. J. Hydrogen Energy 37 (2012) 15966‒15975. Crossref
(23). D.A.J.M. Ligthart, J.A.Z. Pieterse, E.J.M. Hensen, Appl. Catal. A 405 (2011) 108‒119. Crossref
(24). G. Nahar, V. Dupont, Rec. Patents Chem. Eng. 6 (2013). 8‒42. Crossref
(25). C.H. Bartholomew, Appl. Catal. A 2012 (2001) 17‒60. Crossref
(26). J.A. Moulijn, A.E. Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3‒16. Crossref
(27). K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. A 314 (2006) 9‒22. Crossref
(28). J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong, C. Hu, Int. J. Hydrogen Energy 36 (2011) 7094‒7104. Crossref
(29). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394‒402. Crossref
(30). S. Li, J. Gong, Chem. Soc. Rev. 43 (2014) 7245‒7256. Crossref
(31). K. Fang, J. Ren, Y. Sun, J. Mol. Catal. A 229 (2005) 51–58. Crossref
(32). S. He, H. Wu, W. Yu, L. Mo, H. Lou, H. Zheng, Int. J. Hydrogen Energy 34 (2008) 839‒843. Crossref
(33). S. He, X. Zheng, L. Mo, W. Yu, H. Wanga, Y. Luo, Mater. Res. Bull. 49 (2014) 108–113. Crossref
(34). D. Baudouin, U. Rodemerck, F. Krumeich, A. Mallmann, R.C. Szeto, H. Ménard, L. Veyre, J.- P. Candy, P.B. Webb, C. Thieuleux, C. Copéret, J. Catal. 297 (2013) 27‒34. Crossref
(35). J. Juan-Juan, M.C. Roman-Martınez, M.J. Illan- Gomez, Appl. Catal. A 355 (2009) 27–32. Crossref
(36). J.M. García-Vargas, J.L. Valverde, A. Lucas Consuegra, B. Gómez-Monedero, P. Sánchez, F. Dorado, Appl. Catal. A 431-432 (2012) 49‒56. Crossref
(37). D. Liu, Y. Wang, D. Shi, X. Jia, X. Wang, A. Borgna, R. Lau, Y. Yang, Int. J. Hydrogen Energy 37 (2012) 10135‒10144. Crossref
(38). S. Somacescu, M. Florea, P. Osiceanu, J.M. Cal¬deron-Moreno, C. Ghica, J.M. Serra, J. Nanopart. Res. 17 (2015) 426. Crossref
(39). Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Surf. Sci. 233 (2004) 58‒68. Crossref
(40). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992‒21006. Crossref
(41). Y. Wang, L. Wang, N. Gan, Z.Y. Lim, C. Wu, J. Peng, W.G. Wang, Int. J. Hydrogen Energy 39 (2014) 10971‒10979.
(42). A.J. Abreu, A.F. Lucrédio, E.M. Assaf, Fuel. Process. Technol. 102 (2012) 140‒145. Crossref
(43). D. Li, Y. Nakagawa, K. Tomishige, Appl. Catal. A 408 (2011) 1‒24. Crossref
(44). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10‒18. Crossref
(45). S. Gopalakrishnana, M.G. Faga, I. Miletto, S. Coluccia, G. Caputo, S. Sau, A. Giaconia, G. Berlier, Appl. Catal. B 138-139 (2013) 353‒361. Crossref
(46). A.J. Majewski, J. Wood, W. Bujalski, Int. J. Hydrogen Energy 38 (2013) 14531‒14541. Crossref
(47). V.M. Gonzalez-Delacruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal. 257 (2008) 307‒314. Crossref
(48). V.M. Gonzalez-Delacruz, F. Ternero, R. Pere-ñíguez, A. Caballero, J.P. Holgado, Appl. Catal. A 384 (2010) 1‒9. Crossref
(49). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A 481 (2014) 104‒115. Crossref
(50). M.A. Naeem, A.S. Al-Fatesh, A.H. Fakeeha, A.E. Abasaeed, Int. J. Hydrogen Energy 39 (2014) 17009‒17023. Crossref
(51). L. Zhang, X. Wang, B. Tan, U.S. Ozkan, J. Mol. Catal. A 297 (2009) 26‒34. Crossref
(52). H. Li, H. Xu, J. Wang, J. Natural. Gas Chem. 20 (2011) 1‒8. Crossref
(53). K. Urasaki, Y. Tanpo, Y. Nagashima, R. Kikuchi, S. Satokawa, Appl. Catal. A 452 (2013) 174‒178. Crossref
(54). W. Yang, D. He, Appl. Catal. A 524 (2016) 94‒104. Crossref
(55). F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Int. J. Hydrogen Energy 39 (2014) 10454‒10466. Crossref
(56). F. Bentaleb, M. Che, A.-C. Dubreuil, C. Thomazeau, E. Marceau, Catal. Today 235 (2014) 250‒255. Crossref
(57). R. Murugavel, P. Davis, V. Shete, Inorg. Chem. 42 (2003) 4696‒4706. Crossref
(58). K. Wada, T. Mitsudo, Catal. Surv. Asia 9 (2005) 229‒241. Crossref
(59). A.J. Ward, A.F. Masters, T. Maschmeyer, Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts, 2011. P. 135‒166, In: C. Hartmann-Thompson (ed.), Applications of Polyhedral Oligomeric Silsesquioxanes, Advances in Silicon Science 3, Springer Science + Business Media B.V. Crossref
(60). N. Maxim, H.C.L. Abbenhuis, P.J. Stobbelaar, B.L. Mojet, R.A. van Santen, Phys. Chem. Chem. Phys. 1 (1999) 4473‒4477. Crossref
(61). N. Maxim, P.M.C. Magusin, P.J. Kooyman, J.H.M.C. van Wolput, R.A. van Santen, H.C.L. Abbenhuis, Chem. Mater. 13 (2001) 2958‒2964. Crossref
(62). N. Maxim, Metal silesquioxanes as precursors to microporous metallosilicates. PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 2002. ISBN 90-386-2683-5
(63). H. Kaneko, S. Taku, Y. Tamaura, Solar Energy 85 (2011) 2321–2330. Crossref
(64). A. Fina, D. Tabuani, F. Carniato, A. Frache, E. Boccaleri, G. Camino, Thermochim. Acta 440 (2006) 36‒42. Crossref
(65). M.F.P. Silva, J.R. Matos, P.C. Isolani, J. Therm. Anal. Calorim. 94 (2008) 305‒311. Crossref
(66). A. Małecki, R. Gajerski, S. Łabuś, B. Prochowska-Klisch, K.T. Wojciechowski, J. Therm. Anal. Calorim. 60 (2000) 17‒23. Crossref
(67). E. Mikuli, A. Migdał-Mikuli, R. Chyży, B. Grad, R. Dziembaj, Thermochim. Acta 370 (2001) 65‒71. Crossref
(68). B. Jankovic, S. Mentus, D. Jelić, Physica B 404 (2010) 2263‒2269. Crossref
(69). F. Pompeo, N.N. Nichio, M.G. Gonzalez, M. Montes, Catal. Today 107-108 (2005) 856–862. Crossref
(70). G.P. Androutsopoulos, C.E. Salmas, Ind. Eng. Chem. Res. 39 (2000) 3747‒3763. Crossref
(71). T.D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Micropor. Mesopor. Mater. 119 (2009) 290‒298. Crossref
(72). J. Gao, J. Guo, D. Liang, Z. Hou, J. Fei, X. Zheng, Int. J. Hydrogen Energy 33 (2008) 5493‒5500. Crossref
(73). X. Chen, A.R. Tadd, J.W. Schwank, J. Catal. 251 (2007) 374‒387. Crossref
(74). B. Li, X. Xu, S. Zhang, Int. J. Hydrogen Energy 38 (2013) 890‒900. Crossref
(75). R.V. Wandekar, M. Ali (Basu), B.N. Wani, S.R. Bharadwaj, Mater. Chem. Phys. 99 (2006) 289‒294. Crossref
(76). B. Scheffer, P. Molhoek, J.A. Moulijn, Appl. Catal. 46 (1989) 11‒30. Crossref
(77). H. Mori, C. Wen, J. Otomo, K. Eguchi, H. Takahashi, Appl. Catal. A 245 (2003) 79‒85. Crossref
(78). J.S. Lisboa, L.E. Terra, P.R.J. Silva, H. Saitovitch, F.B. Passos, Fuel Process. Technol. 92 (2011) 2075‒2082. Crossref
(79). S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today 93-95 (2004) 95‒105. Crossref
(80). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzón, Catal. Today 63 (2000) 71‒85. Crossref
(81). T. Takeguchi, S.N. Furukawa, M. Inoue, J. Catal. 202 (2001) 14‒24. Crossref
(82). J.C. Escritori, S.C. Dantas, R.R. Soares, C.E. Hori, Catal. Commun. 10 (2009) 1090‒1094. Crossref
(83). T. Takeguchi, S.N. Furukawa, M. Inoue, K. Eguchi, Appl. Catal. A 240 (2003) 223‒233. Crossref
(84). Q. Jing, L. Fang, H. Lou, X. Zheng, J. Rare Earths 27 (2009) 431‒436. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.