Direct Catalytic Reduction of SO2 by CH4 over Fe-Mn Catalysts Prepared by Granulation of Ferromanganese Nodules
DOI:
https://doi.org/10.18321/ectj203Abstract
The chemical, textural, structural and strength properties of ferromanganese nodules and granulated Fe-Mn catalysts containing such nodules were studied. It was found that the granulated catalysts have a developed pore structure, which is close to that of the starting material, and surpass the starting material in strength parameters. The catalysts were tested in desulfurization by methane at a stoichiometric ratio SO2/CH4 = 2. The testing showed that Fe-Mn catalysts with the oxide or sulfide form of active components are active in desulfurization by methane and can selectively reduce SO2 with a conversion above 80%.
References
[2]. Z.R. Ismagilov, M.A. Kerzhentsev, S.R. Khairulin, V.V. Kuznetsov, Chemistry for Sustainable Development 7(4) (1999) 375–396.
[3]. Z.R. Ismagilov, M.A. Kerzhentsev, S.R. Khairulin, Chemistry for Sustainable Development 7 (4) (1999) 443–449.
[4]. Z.R. Ismagilov, M.A. Kerzhentsev, Journal of Mendeleev Chemical Society XXXV (1):43 (1990).
[5]. F. Scala, R. Solimene, F. Montagnaro, Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. P. 319 (2013).
[6]. L.E. Kallinikos, E.I. Farsari, D.N. Spartinos, N.G. Papayannakos, Fuel Process. Technol. 91(12) (2010) 1794–1802.
[7]. A. Gomez, N. Fueyo, A. Tomas, Comput. Chem. Eng. 31 (2007) 1419–1431.
[8]. T. Kameda, A. Kodama, T. Yoshioka, Chemosphere 93 (2013) 2889–2893.
[9]. B. Dou, W. Pan, Q. Jin, W. Wang, Y. Li, Energy Convers. Manag., 50 (2009) 2547–2553.
[10]. S. Koutsopoulos, S.B. Rasmussen, K.M. Eriksen, R. Fehrmann, Appl. Catal., A: Gen. 306 (2006) 142–148.
[11]. Y. Xiao, Q. Liu, Zh. Liu, Zh. Huang, Y. Guo, J. Yang, Appl. Catal., B: Environ. 82 (2008) 114–119.
[12]. M.J. King, W.G. Davenport, M.S. Moats, Wet sulfuric acid process fundamentals. Sulfuric Acid Manufacture (Second Edition). Analysis, Control and Optimization. P.295 (2013).
[13]. T. Zhu, A. Dreher, M. Flytzani-Stephanopoulos, Appl. Catal., B: Environ. 21 (1999) 103–120.
[14]. G.B. Han, N.K. Park, S.H. Yoon, T.J. Lee, K.J. Yoon, Appl. Catal., A: Gen. 337 (2008) 29–38.
[15]. G.B. Han, N.K. Park, S.H. Yoon, T.J. Lee, Chemosphere 72 (2008) 1744–1750.
[16]. V.E. Kaloidas, N.G. Papayannakos, Int. J. Hydrogen Energy 12 (1987) 403–409.
[17]. J. Sarlis, D. Berk, Ind. Eng. Chem. Res. 27 (1988) 1951–1954.
[18]. X. Zhang, D.O. Hayward, C. Lee, D.M.P. Mingos, Appl. Catal. B: Environ. 33 (2001) 137–148.
[19]. T.S. Wiltowski, K. Sangster, W.S. O’Brien, J. Chem. Tech. Biotech. 7 (1996) 204–212.
[20]. M. Flytzani-Stephanopoulos, T. Zhu, Yu. Li, Catal. Today 62 (2000) 145–158.
[21]. T. Zhu, L. Kundakovic, A. Dreher, M. Flytzani-Stephanopoulos, Catal. Today 50 (1999) 381–397.
[22]. A.M. Ivanova, A.N. Smirnov, V.S. Rogov, A.P. Motov, N.S. Nikolskaya, K.V. Palshin, Mineral Resources of Russia 6 (2006) 14–19.
[23]. N.V. Shikina, S.R. Khairulin, V.V. Kuznetsov, N.A. Rudina, Z.R. Ismagilov, Chemistry for Sustainable Development 23 (2015) 199–208.
[24]. M.Y. Smirnov, A.V. Kalinkin, A.V. Pashis, A.M. Sorokin, A.S. Noskov, K.C. Kharas, V.I. Bukhtiyarov, J. Phys. Chem. B. 23 (2005) 11712–11719.