Development of a Technique and Investigation of Capacitance Characteristics of Electrode Materials for Supercapacitors Based on Nitrogen-Doped Carbon Nanotubes
DOI:
https://doi.org/10.18321/ectj663Keywords:
electrode material, supercapacitors, electric capacitance, electrical double layer, pseudocapacitance, carbon nanotubesAbstract
Carbon nanotubes are widely employed as catalyst supports and electrode materials. In our earlier studies, capacitance characteristics of carbon nanotubes (CNTs) and nitrogen-doped carbon nanotubes (N-CNTs) were measured. Voltammetric curves obtained for nitrogen-doped nanotubes in an acid electrolyte showed pseudocapacitance peaks that were caused by electrochemical processes involving nitrogen-containing functional groups. In this study, measurements were made in a two-electrode cell of a supercapacitor with a hydrophilic polypropylene PORP-A1 film serving as a separator in alkaline (6 M KOH solution) and acid (1 M H2SO4 solution) electrolytes using a PARSTAT 4000 potentiostat/galvanostat. A technique was developed to estimate the contribution of electrical double layer (EDL) by subtracting pseudocapacitance from total capacitance of a cell using the Origin 9 software. The contribution of EDL and pseudocapacitance to the capacitance of supercapacitor cells was estimated. The highest capacitance of an electrode material equal to 97.2 F/g (including the EDL capacitance of 65 F/g) was reached for nanotubes doped with 8.5% of nitrogen in an acid electrolyte at a potential scanning rate of 10 mV/s.
References
[2]. L. Sun, X. Wang, Y. Wang, Q. Zhang, Carbon 122 (2017) 462‒474. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2017.07.006">Crossref</a>
[3]. S. Merum, J.B. Veluru, R. Seeram, Mater. Sci. Eng. B 223 (2017) 43‒63. <a href="HTTPS://DOI.ORG/10.1016/j.mseb.2017.06.002">Crossref</a>
[4]. W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon 119 (2017) 150‒171. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2017.04.027">Crossref</a>
[5]. D. Zhong, Z. Zhang, L.-M. Peng, Nanotechnology 28 (2017) Article number: 212001. <a href="HTTPS://DOI.ORG/10.1088/1361-6528/aa6a9e">Crossref</a>
[6]. Gaurav Bhanjana, Neeraj Dilbaghi, Ki-Hyun Kim, Sandeep Kumar, J. Mol. Liq. 242 (2017) 966‒970. <a href="HTTPS://DOI.ORG/10.1016/j.molliq.2017.07.072">Crossref</a>
[7]. V.V. Chesnokov, O.Yu. Podyacheva, Z.R. Ismagilov, Chemistry for Sustainable Development 24 (2016) 521‒527. <a href="HTTPS://DOI.ORG/10.15372/KhUR20160412">Crossref</a>
[8]. V.V. Chesnokov, O.Yu. Podyacheva, A.N. Shmakov, L.S. Kibis, A.I. Boronin, Z.R. Ismagilov, Chinese J. Catal. 37 (2016) 169‒176. <a href="HTTPS://DOI.ORG/10.1016/S1872-2067(15)60982-2">Crossref</a>
[9]. A.N. Suboch, S.V. Cherepanova, L.S. Kibis, D.A. Svintsitskiy, O.A. Stonkus, A.I. Boronin, V.V. Chesnokov, A.I. Romanenko, Z.R. Ismagilov, O.Yu. Podyacheva, Fullerenes, Nanotubes Carbon Nanostruct. 24 (2016) 520‒530. <a href="HTTPS://DOI.ORG/10.1080/1536383X.2016.1198331">Crossref</a>
[10]. Z.R. Ismagilov, A.E. Shalagina, O.Yu. Podyacheva, R.I. Kvon, I.Z. Ismagilov, M.A. Kerzhentsev, Ch.N. Barnakov, A.P. Kozlov, Kinet. Katal. 48 (2007) 581–588. <a href="HTTPS://DOI.ORG/10.1134/S0023158407040179">Crossref</a>
[11]. N.K. Eremenko, O.Yu. Podyacheva, Z.R. Ismagi¬lov, I.I. Obraztsova, A.N. Eremenko, L.S. Kibis, D.A. Svintsitskiy, Eurasian Chem.-Technol. J. 17 (2015) 101‒103. <a href="HTTPS://DOI.ORG/10.18321/ectj200">Crossref</a>
[12]. Y.G. Kryazhev, V.A. Drozdov, V.S. Solodovnichenko, I.V. Anikeeva, V.A. Likholobov, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon, Solid Fuel Chem. 49 (2015) 1‒6. <A HREF="HTTPS://DOI.ORG/10.3103/S0361521915010073">Crossref</a>
[13]. O.Yu. Podyacheva, Z.R. Ismagilov, Catal. Today 249 (2015) 12‒22. <A HREF="HTTPS://DOI.ORG/10.1016/j.cattod.2014.10.033">Crossref</a>
[14]. O.Yu. Podyacheva, S.V. Cherepanova, A.I. Romanenko, L.S. Kibis, D.A. Svintsitskiy, A.I. Boronin, O.A. Stonkus, A.N. Suboch, A.V. Puzynin, Z.R. Ismagilov, Carbon 122 (2017) 475-483. <A HREF="HTTPS://DOI.ORG/10.1016/j.carbon.2017.06.094">Crossref</a>
[15]. O.Yu. Podyacheva, Z.R. Ismagilov, R.A. Buyanov, Chemistry for Sustainable Development 24 (2016) 57–60. <A HREF="HTTPS://DOI.ORG/10.15372/KhUR20160108">Crossref</a>
[16]. A.N. Suboch, L.S. Kibis, O.A. Stonkus, D.A. Svinitskiy, A.B. Ayushev, Z.R. Ismagilov, O.Yu. Podyacheva, Chemistry for Sustainable Development 25 (2017) 85–91. <A HREF="HTTPS://DOI.ORG/10.15372/KhUR20170112">Crossref</a>
[17]. Shuai Ban, Jiujun Zhang, Lei Zhang, Ken Tsay, Xinfu Zou, Electrochim. Acta 90 (2013) 542‒549. <A HREF="HTTPS://DOI.ORG/10.1016/j.electacta.2012.12.056">Crossref</a>
[18]. A.V. Puzynin, B.P. Aduev, G.M. Belokurov, A.P. Kozlov, O.S. Efimova, A.V. Samarov, Ch.N. Barnakov, Z.R. Ismagilov, Vestnik KuzGTU [KuzSTU Bulletin] 5 (99) (2013) 62–67 (in Russian).
[19]. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energ. Rev. 58 (2016) 1189–1206. <A HREF="HTTPS://DOI.ORG/10.1016/j.rser.2015.12.249">Crossref</a>
[20]. H.J. Zheng, A.M. Yu, C.A. Ma, Russ. J. Electrochem. 48 (2012) 1179–1186. <A HREF="HTTPS://DOI.ORG/10.1134/S102319351205014X">Crossref</a>
[21]. V.M. Zhukovskiy, O.V. Bushkova. Impedance spectroscopy of solid electrolytic materials; Ural State University, Ekaterinburg, Russia, 2000, 35 p. (in Russian).
[22]. E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley-Interscience, N.Y., 2005, 606 p.
[23]. A.S. Kavasoglu, N. Kavasoglu, S. Oktik, Solid-State Electron. 52 (2008) 990–996. <A HREF="HTTPS://DOI.ORG/10.1016/j.sse.2008.02.004">Crossref</a>