Development of a Technique and Investigation of Capacitance Characteristics of Electrode Materials for Supercapacitors Based on Nitrogen-Doped Carbon Nanotubes

Authors

  • G. Yu. Simenyuk Institute of Coal Chemistry and Materials Science SB RAS, Pr. Sovetskiy, 18, Kemerovo, 650000, Russia https://orcid.org/0000-0003-4066-0778
  • A. V. Puzynin Institute of Coal Chemistry and Materials Science SB RAS, Pr. Sovetskiy, 18, Kemerovo, 650000, Russia; T.F. Gorbachev Kuzbass State Technical University, 50 Let Oktyabrya str., 17, Kemerovo, 650000, Russia https://orcid.org/0000-0002-2879-6720
  • O. Yu. Podyacheva Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva, 5, Novosibirsk, 630090, Russia https://orcid.org/0000-0001-7313-8682
  • A. V. Salnikov Institute of Coal Chemistry and Materials Science SB RAS, Pr. Sovetskiy, 18, Kemerovo, 650000, Russia; Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva, 5, Novosibirsk, 630090, Russia
  • Yu. A. Zakharov Institute of Coal Chemistry and Materials Science SB RAS, Pr. Sovetskiy, 18, Kemerovo, 650000; Kemerovo State University, Krasnaya str., 6, Kemerovo, 650043 Russian Federation
  • Z. R. Ismagilov Institute of Coal Chemistry and Materials Science SB RAS, Pr. Sovetskiy, 18, Kemerovo, 650000; Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva, 5, Novosibirsk, 630090 Russian Federation https://orcid.org/0000-0002-1520-9216

DOI:

https://doi.org/10.18321/ectj663

Keywords:

electrode material, supercapacitors, electric capacitance, electrical double layer, pseudocapacitance, carbon nanotubes

Abstract

Carbon nanotubes are widely employed as catalyst supports and electrode materials. In our earlier studies, capacitance characteristics of carbon nanotubes (CNTs) and nitrogen-doped carbon nanotubes (N-CNTs) were measured. Voltammetric curves obtained for nitrogen-doped nanotubes in an acid electrolyte showed pseudocapacitance peaks that were caused by electrochemical processes involving nitrogen-containing functional groups. In this study, measurements were made in a two-electrode cell of a supercapacitor with a hydrophilic polypropylene PORP-A1 film serving as a separator in alkaline (6 M KOH solution) and acid (1 M H2SO4 solution) electrolytes using a PARSTAT 4000 potentiostat/galvanostat. A technique was developed to estimate the contribution of electrical double layer (EDL) by subtracting pseudocapacitance from total capacitance of a cell using the Origin 9 software. The contribution of EDL and pseudocapacitance to the capacitance of supercapacitor cells was estimated. The highest capacitance of an electrode material equal to 97.2 F/g (including the EDL capacitance of 65 F/g) was reached for nanotubes doped with 8.5% of nitrogen in an acid electrolyte at a potential scanning rate of 10 mV/s.

 

References

[1]. M.S. Ribeiro, A.L. Pascoini, W.G. Knupp, I. Camps, Appl. Surf. Sci. 426 (2017) 781‒787. <a href="HTTPS://DOI.ORG/10.1016/j.apsusc.2017.07.162">Crossref</a>

[2]. L. Sun, X. Wang, Y. Wang, Q. Zhang, Carbon 122 (2017) 462‒474. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2017.07.006">Crossref</a>

[3]. S. Merum, J.B. Veluru, R. Seeram, Mater. Sci. Eng. B 223 (2017) 43‒63. <a href="HTTPS://DOI.ORG/10.1016/j.mseb.2017.06.002">Crossref</a>

[4]. W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon 119 (2017) 150‒171. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2017.04.027">Crossref</a>

[5]. D. Zhong, Z. Zhang, L.-M. Peng, Nanotechnology 28 (2017) Article number: 212001. <a href="HTTPS://DOI.ORG/10.1088/1361-6528/aa6a9e">Crossref</a>

[6]. Gaurav Bhanjana, Neeraj Dilbaghi, Ki-Hyun Kim, Sandeep Kumar, J. Mol. Liq. 242 (2017) 966‒970. <a href="HTTPS://DOI.ORG/10.1016/j.molliq.2017.07.072">Crossref</a>

[7]. V.V. Chesnokov, O.Yu. Podyacheva, Z.R. Ismagilov, Chemistry for Sustainable Development 24 (2016) 521‒527. <a href="HTTPS://DOI.ORG/10.15372/KhUR20160412">Crossref</a>

[8]. V.V. Chesnokov, O.Yu. Podyacheva, A.N. Shmakov, L.S. Kibis, A.I. Boronin, Z.R. Ismagilov, Chinese J. Catal. 37 (2016) 169‒176. <a href="HTTPS://DOI.ORG/10.1016/S1872-2067(15)60982-2">Crossref</a>

[9]. A.N. Suboch, S.V. Cherepanova, L.S. Kibis, D.A. Svintsitskiy, O.A. Stonkus, A.I. Boronin, V.V. Chesnokov, A.I. Romanenko, Z.R. Ismagilov, O.Yu. Podyacheva, Fullerenes, Nanotubes Carbon Nanostruct. 24 (2016) 520‒530. <a href="HTTPS://DOI.ORG/10.1080/1536383X.2016.1198331">Crossref</a>

[10]. Z.R. Ismagilov, A.E. Shalagina, O.Yu. Podyacheva, R.I. Kvon, I.Z. Ismagilov, M.A. Kerzhentsev, Ch.N. Barnakov, A.P. Kozlov, Kinet. Katal. 48 (2007) 581–588. <a href="HTTPS://DOI.ORG/10.1134/S0023158407040179">Crossref</a>

[11]. N.K. Eremenko, O.Yu. Podyacheva, Z.R. Ismagi¬lov, I.I. Obraztsova, A.N. Eremenko, L.S. Kibis, D.A. Svintsitskiy, Eurasian Chem.-Technol. J. 17 (2015) 101‒103. <a href="HTTPS://DOI.ORG/10.18321/ectj200">Crossref</a>

[12]. Y.G. Kryazhev, V.A. Drozdov, V.S. Solodovnichenko, I.V. Anikeeva, V.A. Likholobov, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon, Solid Fuel Chem. 49 (2015) 1‒6. <A HREF="HTTPS://DOI.ORG/10.3103/S0361521915010073">Crossref</a>

[13]. O.Yu. Podyacheva, Z.R. Ismagilov, Catal. Today 249 (2015) 12‒22. <A HREF="HTTPS://DOI.ORG/10.1016/j.cattod.2014.10.033">Crossref</a>

[14]. O.Yu. Podyacheva, S.V. Cherepanova, A.I. Romanenko, L.S. Kibis, D.A. Svintsitskiy, A.I. Boronin, O.A. Stonkus, A.N. Suboch, A.V. Puzynin, Z.R. Ismagilov, Carbon 122 (2017) 475-483. <A HREF="HTTPS://DOI.ORG/10.1016/j.carbon.2017.06.094">Crossref</a>

[15]. O.Yu. Podyacheva, Z.R. Ismagilov, R.A. Buyanov, Chemistry for Sustainable Development 24 (2016) 57–60. <A HREF="HTTPS://DOI.ORG/10.15372/KhUR20160108">Crossref</a>

[16]. A.N. Suboch, L.S. Kibis, O.A. Stonkus, D.A. Svinitskiy, A.B. Ayushev, Z.R. Ismagilov, O.Yu. Podyacheva, Chemistry for Sustainable Development 25 (2017) 85–91. <A HREF="HTTPS://DOI.ORG/10.15372/KhUR20170112">Crossref</a>

[17]. Shuai Ban, Jiujun Zhang, Lei Zhang, Ken Tsay, Xinfu Zou, Electrochim. Acta 90 (2013) 542‒549. <A HREF="HTTPS://DOI.ORG/10.1016/j.electacta.2012.12.056">Crossref</a>

[18]. A.V. Puzynin, B.P. Aduev, G.M. Belokurov, A.P. Kozlov, O.S. Efimova, A.V. Samarov, Ch.N. Barnakov, Z.R. Ismagilov, Vestnik KuzGTU [KuzSTU Bulletin] 5 (99) (2013) 62–67 (in Russian).

[19]. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energ. Rev. 58 (2016) 1189–1206. <A HREF="HTTPS://DOI.ORG/10.1016/j.rser.2015.12.249">Crossref</a>

[20]. H.J. Zheng, A.M. Yu, C.A. Ma, Russ. J. Electrochem. 48 (2012) 1179–1186. <A HREF="HTTPS://DOI.ORG/10.1134/S102319351205014X">Crossref</a>

[21]. V.M. Zhukovskiy, O.V. Bushkova. Impedance spectroscopy of solid electrolytic materials; Ural State University, Ekaterinburg, Russia, 2000, 35 p. (in Russian).

[22]. E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley-Interscience, N.Y., 2005, 606 p.

[23]. A.S. Kavasoglu, N. Kavasoglu, S. Oktik, Solid-State Electron. 52 (2008) 990–996. <A HREF="HTTPS://DOI.ORG/10.1016/j.sse.2008.02.004">Crossref</a>

Downloads

Published

2017-09-15

How to Cite

Simenyuk, G. Y., Puzynin, A. V., Podyacheva, O. Y., Salnikov, A. V., Zakharov, Y. A., & Ismagilov, Z. R. (2017). Development of a Technique and Investigation of Capacitance Characteristics of Electrode Materials for Supercapacitors Based on Nitrogen-Doped Carbon Nanotubes. Eurasian Chemico-Technological Journal, 19(3), 201–208. https://doi.org/10.18321/ectj663

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>