Design of Highly Efficient Catalyst for Rational Way of Direct Conversion of Methane

Authors

  • I. Z. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva 5, 630090 Novosibirsk, Russia
  • E. V. Matus Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva 5, 630090 Novosibirsk, Russia
  • M. A. Kerzhentsev Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva 5, 630090 Novosibirsk, Russia
  • I. P. Prosvirin Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva 5, 630090 Novosibirsk, Russia
  • R. M. Navarro Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
  • J. J.G. Fierro Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
  • G. Gerritsen Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • E. Abbenhuis Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • Z. R. Ismagilov Institute of Coal Chemistry and Material Science SB RAS, pr. Sovetskiy 18, 650000 Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj201

Abstract

Effects of composition and preparation method of MnNaW/SiO2 and LaSr/CaO catalysts on their physical-chemical properties and performance in oxidative coupling of methane (OCM) have been studied. For MnNaW/SiO2 catalysts the synthesis method and type of SiO2 have a significant effect on the texture, while the Na/W ratio determines the phase composition. The variation of preparation method and temperature of catalyst calcination allows regulation of the metal surface concentration and mode of metal distribution across the SiO2 support. For LaSr/CaO catalysts the synthesis method determines the specific surface area, surface and phase composition. Correlations between catalyst performance, preparation method and state of the catalyst were established. The rational preparation procedure and perspective composition of OCM catalyst have been developed. The 20La/CaO catalysts prepared by citrate sol-gel method were shown to provide ~20% C2 yield and ~40% methane conversion at 800 ºC.

References

[1]. Z.R. Ismagilov, E.V. Matus and L.T. Tsikoza, Energy Environmental Science 5 (2008) 526–541.

[2]. S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert and R. Schomacker, Appl. Catal. A: General 53 (2012) 425–426.

[3]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R.Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18.

[4]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A: General 481 (2014) 104–115.

[5]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992–21006.

[6]. E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Industrial Engineering Chemistry Research 46 (2007) 4063–4074.

[7]. E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67.

[8]. U. Zavyalova, M. Holena, R. Schlogl and M. Baerns, ChemCatChem 3 (2011) 1935–1947.

[9]. Z.R. Ismagilov, A. Parmaliana, F. Frusteri, D. Miceli, A.A. Kirchanov, G.B. Barannik, Catal. Today 24 (1995) 281–284.

[10]. S. Pak, P. Qiu and J.H. Lunsford, J. Catal. 179 (1998) 222–230.

[11]. T.P. Tiemersma, M.J. Tuinier, F. Gallucci, J.A.M. Kuipers and M. van Sint Annaland, Appl. Catal. A: General 96 (2012) 433–434.

[12]. S. Jaso, S. Sadjadi, H.R. Godini, U. Simon, S. Arndt, O. Gorke, A. Berthold, H. Arellano Garcia, H. Schubert,
R. Schomacker and G. Wozny, Journal of Natural Gas Chemistry 21 (2012) 534–543.

[13]. S. Bhatia, C.Y. Thien and A.R. Mohamed, Chem. Eng. J. 148 (2009) 525–532.

[14]. X. Dong, W. Jin, N. Xu and K. Li, Chem. Commun. 47 (2011) 10886–10902.

[15]. O. Czuprat, T. Schiestel, H. Voss and J. Caro, Industrial & Engineering Chemistry Research 49 (2010) 10230–10236.

[16]. Y. Wei, W. Yang, J. Caro and H. Wang, Chem. Eng. J. 220 (2013) 185–203.

[17]. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.D. Vasil’ev, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal., 2015, 56, No. 4, 459.

[18]. J.H. Scofield, J. Electron. Spectrosc. Relat. Phenom. 8 (1976) 129–137.

[19]. S. Pak, J.H. Lunsford, Appl. Catal. A: General 168 (1998) 131–137.

[20]. D.J. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal. 155 (1995) 390–402.

[21]. J.S. Ahari, M.T. Sadeghi, S. Zarrinpashne, Journal of Natural Gas Chemistry 20 (2011) 204–213.

[22]. L. Wang, L. Chou, B. Zhang, H. Song, J. Zhao, J. Yang, S. Li, J. Mol. Catal. A: Chem. 245 (2006) 272–277.

[23]. X. Wang, S. Li, Shiyou Huagong, 1997, 26, 381.

[24]. Y.T. Chua, A.R. Mohamed, S. Bhatia, Appl. Catal. A: General 343 (2008) 142–148.

[25]. L. Chou, Y. Cai, B. Zhang, J. Niu, S. Ji, S. Li, Journal of Natural Gas Chemistry, 2002, 11, 131.

[26]. M.R. Ehsani, S.M. Ghoreishi, Industrial Engineering Chemistry Research 16 (2010) 923–928.

[27]. W. Zheng, D. Cheng, F. Chen and X. Zhan, Journal of Natural Gas Chemistry 19 (2010) 515–521.

[28]. L.M. Ioffe, P. Bosch, T. Viveros, H. Sanchez, Y.G. Borodko, Mater. Chem. Phys. 51 (1997) 269–275.

[29]. V. Salehoun, A. Khodadadi, Y. Mortazavi, A. Talebizadeh, Chem. Eng. Sci. 63 (2008) 4910–4916.

[30]. V.S. Arutunov, and O.V. Krylov, Oxidative conversion of methane, 1998, Moscow: Nauka.

[31]. Sinev, M.A., Doctoral (Chem) Dissertation, Moscow: Semenov Institute of Chemical Physics, 2011.

[32]. Y. Zeng, Z. Li, L. Wang and Y. Xiong, CrystEngComm 14 (2012) 7043–7048.

[33]. B.R. Strohmeier and D.M. Hercules, J. Phys. Chem. 88 (1984) 4922–4929.

[34]. V.B. Bayer, R. Podloucky and C. Franchini, Phys. Rev. B: Condens. Matter. 76 (2007) 165428-1 – 165428-10.

[35]. C.D. Wagner, Faraday Discussions of the Chemical Society 60 (1975) 291–300.

[36]. S.C. Moulzolf, S. Ding and R.J. Lad, Sensors and Actuators B, 77 (2001) 375–382.

[37]. S.F. Ho, S. Contarini and J.W. Rabalais, Phys. Chem. 91 (1987) 4779–4788.

[38]. M. Gharibi and F.T. Zangeneh, F. Yaripour and S. Sahebdelfar, Appl. Catal. A: General 8 (2012) 443–444.

[39]. K. Langfeld, B. Frank, V.E. Strempel, C. BergerKarin, G. Weinberg, E.V. Kondratenko and R. Schomäcker, Appl. Catal. A: General 417-418 (2012) 145–152.

[40]. S. Hou, Y. Cao, W. Xiong, H. Liu and Y. Kou, Industrial and Engineering Chemistry Research 45 (2006) 7077–7083.

Downloads

Published

2015-04-10

How to Cite

Ismagilov, I. Z., Matus, E. V., Kerzhentsev, M. A., Prosvirin, I. P., Navarro, R. M., Fierro, J. J., … Ismagilov, Z. R. (2015). Design of Highly Efficient Catalyst for Rational Way of Direct Conversion of Methane. Eurasian Chemico-Technological Journal, 17(2), 105–118. https://doi.org/10.18321/ectj201

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>