Comparative Analysis of Physicochemical Properties of Rutile TiO2 with Hierarchical 3D Architecture Prepared by Liquid Hydrolysis of TiCl4 and Hydrothermal Method
DOI:
https://doi.org/10.18321/ectj976Keywords:
titanium dioxide, nanostructured rutile, porous structure, thermal treatmentAbstract
TiO2 (rutile) samples with a hierarchical 3D nanostructure of the particles were synthesized by two methods: liquid hydrolysis of TiCl4 at 90 °С and atmospheric pressure; hydrothermal synthesis from TiCl4 at 160 °С and different [H2O]/[Ti] ratios. The effect exerted by conditions of the synthesis and post-treatments on the crystallite size, morphology, electronic properties and pore structure of the rutile samples was investigated. It was shown that severe hydrothermal conditions with the ratio [H2O]/[Ti] = 20 provide the formation of a more perfect crystal structure of rutile with a smaller band gap energy (3.00 eV against 3.06 eV for the rutile obtained by liquid hydrolysis at atmospheric pressure). The study revealed the stabilizing effect of cerium cations on the pore structure of rutile, which changes upon thermal treatment.
References
(1). K. Nakata, A. Fujishima, J. Photoch. Photobio. C 13 (2012) 169‒189. Crossref
(2). P.X. Gao, P. Shimpi, H. Gao, C. Liu, Y. Guo, W. Cai, K.T. Liao, G. Wrobel, Z. Zhang, Z. Ren, H.J. Lin, Int. J. Mol. Sci. 13 (2012) 73939‒7423. Crossref
(3). Z. Ren, Y. Guo, C.H. Liu, P.X. Gao, Front Chem. 1 (2013) 1‒22. Crossref
(4). F. Mendez-Arriaga, E. de la Calleja, L. Ruiz- Huerta, A. Caballero-Ruiz, R. Almanza, Mat. Sci. Semicon. Proc. 100 (2019) 35‒41. Crossref
(5). M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69‒96. Crossref
(6). M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B: Environ. 125 (2012) 331‒349. Crossref
(7). N. Shaham-Waldmann, Y. Paz, Mat. Sci. Semicon. Proc. 42 (2016) 72‒80. Crossref
(8). C. Byrne, G. Subramanian, S.C. Pillai, J. Environ. Chem. Eng. 6 (2018) 3531‒3555. Crossref
(9). A.L. Linsebigler, G. Lu, J.T. Yates, Chem Rev. 95 (1995) 735‒758. Crossref
(10). A.J. Haider, Z.N. Jameel, I.H. M. Al-Hussaini, Energy Procedia 157 (2019) 17‒29. Crossref
(11). Z. Wu, Q. Wu, L. Du, C. Jiang, L. Piao, Particuology 15 (2014) 61‒70. Crossref
(12). N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, A.J. Frank, J. Phys. Chem. B 103 (1999) 3308–3314. Crossref
(13). J. Lin, Y-U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, S.X. Dou, Sci. Rep. 4 (2014) 5769. Crossref
(14). Z. Meng, S. Cai, W. Tu, H. Tang, J. Nanosci. Nanotechnol. 20 (2020) 1085–1097. Crossref
(15). R. Khan, S. Javed, M. Islam. Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications. In book: Titanium Dioxide- Material for a Sustainable Environment. Edited by D. Yang. BoD-Books on Demand. 2018, 518 p. Crossref
(16). Y. Li, Y. Fan, Y. Chen, J. Mater. Chem. 12 (2002) 1387–1390. Crossref
(17). Z.R. Ismagilov, E.V. Bessudnova, N.V. Shikina, V.A. Ushakov, Nanotechnol. Russ. 9 (2014) 21– 25. Crossref
(18). E.V. Bessudnova, N.V. Shikina, Z.R. Ismagilov, International Scientific Journal for Alternative Energy and Ecology [Alternativnaya Energetika i Ekologiya] 7 (147) (2014) 39–47 (in Russ.).
(19). E.V. Bessudnova, N.V. Shikina, M.S. Mel’gunov, Z.R. Ismagilov, Nanotechnol. Russ. 12 (2017) 156–164. Crossref
(20). N.V. Shikina, E.V. Bessudnova, A.P. Nikitin, A.V. Ishchenko, N.A. Rudina, D.S. Selishchev, D.V. Kozlov, Z.R. Ismagilov, J. Nanosci. Nanotechnol. 20 (2020) 1303–1314. Crossref
(21). G.A. Zenkovets, A.A. Shutilov, V.Yu. Gavrilov, S.V. Tsybulya, G.N. Kryukova, Kinet. Catal. 48 (2007) 742–748. Crossref
(22). G.A. Zenkovets, V.Yu. Gavrilov, A.A. Shutilov, S.V. Tsybulya. Kinet. Catal. 50 (2009) 760–767. Crossref
(23). A.A. Shutilov, G.A. Zenkovets, V.Yu. Gavrilov, S.V. Tsybulya, Kinet. Catal. 52 (2011) 111–118. Crossref
(24). N.A. Koryabkina, R.A. Shkrabina, V.A. Ushakov, Z.R. Ismagilov, M. Lausberg, F. Keptein, Kinet. Catal. 38 (1997) 112–116.
(25). N.A. Koryabkina, R.A. Shkrabina, V.A. Ushakov, Z.R. Ismagilov, Catal. Today 29 (1996) 427‒431. Crossref
(26). N.V. Shikina, E.V. Bessudnova, V.A. Ushakov, A.P. Nikitin, M.S. Mel’gunov, A.V. Ishchenko, Z. R. Ismagilov, Nanosystems: Phys. Chem. Math. 9 (2018) 688–695. Crossref
(27). J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15 (1996) 627–637. Crossref
(28). R.L. Penn, J.F. Banfield, Science 281 (1998) 969–971. Crossref
(29). T. Zhu, S.P. Gao, J. Phys. Chem. C 118 (2014) 11385–11396. Crossref
(30). Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong, G. He, Zhaoqi, Sun, J. Alloys Compd. 662 (2016) 179–184. Crossref
(31). H. Choi, S. Khan, J. Choi, D.T.T. Dinh, S.Y. Lee, U. Paik, S.-H. Cho, S. Kim, Appl. Catal. B-Environ. 210 (2017) 513–521. Crossref
(32). H. Lin, C.P. Huang, W. Li, C. Ni, S. Ismat Shah, Yao-Hsuan Tseng, Appl. Catal. B-Environ. 68 (2006) 1–11. Crossref
(33). M.E. Contreras-Garcia, M.L. Garcia-Benjume, V.I. Macias-Andres, E. Barajas-Ledesma, A. Medina-Flores, M.I. Espitia-Cabrera, Mat. Sci. Eng. B 183 (2014) 78–85. Crossref
(34). J.C. Cano-Franco, M. Alvarez-Lainez, Mater. Sci. Semicon. Proc. 90 (2019) 190–197. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.