Effect of Mechanical Activation on the Reactivity of Composites for Flameless Heaters

Authors

  • A. Kaliyeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Republic of Kazakhstan
  • Ye. Tileuberdi Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Republic of Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan
  • L. Galfetti Politecnico di Milano, Space Propulsion Lab (SPLab), Milano, Italy
  • Ye. Ongarbayev Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Republic of Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj962

Keywords:

Flameless heaters, Mechanochemical activation, Exothermic reaction, Powder mixtures, Heat transfer sources, Self-heating

Abstract

The work is devoted to the activation of metal powder mixtures suitable for use in flameless food heaters. Four activated powders have been manufactured starting from the reference material using a standard technique. Activated powders exhibited a significant increment of the reactivity for the reference mixture. Experimental tests were carried out to characterize the resulting composites in terms of the combustion rate. The oxidation reaction at a low heating rate was monitored using a SEIKO EXTAR II thermal analysis machine and its tests were carried out at open air in temperature range starting from room temperature up to 1150 °C at the heating rate of 10 °C/min. Powders activated by mechanical activations and the initial mixture of materials were characterized in terms of apparent density, absorbed surfactant with the mass of sizing, i.e. granulometry, oxidation properties at a low heating rate. With increase the grinding time, the color of the powder switches to dark tones. Powder granulometry was performed on a MALVERN laser granulometer MASTERSIZER 2000 using dry block SCIROCCO. Three measurements for each sample were performed and the results were averaged. The tests were recorded and processed by digital technology to make the combustion rate of the powders, also the experimental setup used for investigations was presented. The sample AlS-AlF_MnO2_SiO-150 is characterized by the lowest metal content, and by the most regular combustion propagation. The powder AlS-AlF_MnO2_SiO-50 features the highest metal content, but the less regular combustion propagation. The use of mechanical activation allows increasing the number of nanoscale materials, which contributes to the synthesis of highly effective flameless food heaters.

 

References

(1). Dale H. Huang, Thanh N. Tran, Bao Yang, J. Therm. Anal. Calorim. 116 (2014) 1047‒1053. Crossref

(2). I. Majid, G.A. Nayik, S. Mohammad Dar, V. Nanda, J. Saudi Soc. Agric. Sci. 17 (2018) 454‒462. Crossref

(3). B. Bohra, R. Chavan, N. Gawit, R. Ahire, R. Kale, N. Kapse, International Journal of Engineering Research & Technology 4 (2015) 365‒368.

(4). I. Klarzak, E. Ura-Bińczyk, M. Płocińska, M. Jurczyk-Kowalska, Thermal Science and Engineering Progress 6 (2018) 87‒94. Crossref

(5). A.M. Kaliyeva, Ye. Tileuberdi, Ye.K. Ongarbayev, Z.A. Mansurov, Gorenie i plazmohimija [Combustion and Plasmachemistry] 16 (2018) 53‒59 (in Russ.).

(6). A.D. Serikbayeva, E.E. Dilmukhambetov, K.A. Myrzabek, N.R. Amangeldi, A.B. Kusherbayeva, The exothermic flameless heaters of canned meat products. 19th International Multidisciplinary Scientific GeoConference SGEM, 30 June ‒ 6 July, 2019, 19 (2019) 123‒130. Crossref

(7). M. Farhanchi, M. Neysari, R. Vatankhah Barenji, A. Heidarzadeh, R. Taherzadeh Mousavian, J. Therm. Anal. Calorim. 122 (2015) 123‒133. Crossref

(8). Q. Mao, Sh. Lu, Zh. Chen, A. Buekens, J, Yan, Int. J. Environ. Pollut. 61 (2017) 293‒313. Crossref

(9). H. Wang, J. Huang, K. Zhang, Y. Yu, K. Liu, G. Yu, S. Deng, B. Wang, Journal of Hazardous Materials 264 (2014) 230‒235. Crossref

(10). Z.A. Mansurov, N.N. Mofa, T.A. Shabanova, J. Eng. Phys. Thermophy. 86 (2013) 848‒855. Crossref

(11). B.S. Reddy, K. Rajasekhar, M. Venu, J.J. S. Dilip, S. Das, K. Das, J. Alloy. Compd. 465 (2008) 97‒105. Crossref

(12). T.L. DeLuca, F. Maggi, M. Fassina, C. Paravan, A. Sossi, Chemical Rocket Propulsion (2017) 191‒233. Crossref

(13). C. Paravan, F. Maggi, S. Dossi, G. Marra, G. Colombo, L. Galfetti, Energetic Nanomaterials (2016) 341‒368. Crossref

(14). L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, Thin Solid Films 418 (2002) 89‒101. Crossref

(15). M.A. Trunov, M. Schoenitz, E.L. Dreizin, Propell. Explos. Pyrot. 30 (2005) 36‒44. Crossref

(16). G. Zhang, Y. Li, S. Tang, R.D. Thompson, L. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 10106‒10119. Crossref

(17). S. Dossi, C Paravan, F. Maggi, L. Galfetti. Propulsion and Energy Forum, Enhancing Micrometric Aluminum Reactivity by Mechanical Activation, 51st AIAA/SAE/ASEE Joint Propulsion Conference, July 27‒29, 2015 Orlando, FL, American Institute of Aeronautics and Astronautics. Crossref

(18). B. Coffey, R.C. Kainthila, C.E. Sesock, B. Coffey, R.C. Kainthila, C.E. Sesock, Portable Heatingapparatus And Metal Fuel Composite For Use With Same, Patent Application Publication, Pub. No.: US 2010/014.6849 A1, Pub. Date: June 17, 2010.

(19). J. Wu, H. Huang, L. Yu, J. Hu, Advances in Materials Physics and Chemistry 3 (2013) 201‒205. Crossref

(20). N. Obradović, S. Filipović, N. Đorđević, D. Kosanović, S. Marković, V. Pavlović, D. Olćan, A. Djordjević, M. Kachlik, K. Maca, Ceram. Int. 42 (2016) 13909‒13918. Crossref

Downloads

Published

2020-06-30

How to Cite

Kaliyeva, A., Tileuberdi, Y., Galfetti, L., & Ongarbayev, Y. (2020). Effect of Mechanical Activation on the Reactivity of Composites for Flameless Heaters. Eurasian Chemico-Technological Journal, 22(2), 141‒147. https://doi.org/10.18321/ectj962

Issue

Section

Articles

Most read articles by the same author(s)