Temperature Dependent Characteristics of Activated Carbons from Walnut Shells for Improved Supercapacitor Performance

  • V. V. Pavlenko Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay Batyr str. 172, 050012 Almaty, Kazakhstan
  • Q. Abbas Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
  • P. Przygocki Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
  • T. Kon’kova D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
  • Zh. Supiyeva Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
  • N. Abeykoon University of Texas at Dallas, 800 W Campbell Rd, 75080-3021 Richardson, USA
  • N. Prikhodko Institute of Combustion Problems, Bogenbay Batyr str. 172, 050012 Almaty, Kazakhstan; Almaty University of Energetics and Communications, 126, Baytursinova St., 050013, Almaty, Kazakhstan
  • M. Bijsenbayev Institute of Combustion Problems, Bogenbay Batyr str. 172, 050012 Almaty, Kazakhstan
  • A. Kurbatov Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
  • B.T. Lesbayev Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay Batyr str. 172, 050012 Almaty, Kazakhstan
  • Z. A. Mansurov Institute of Combustion Problems, Bogenbay Batyr str. 172, 050012 Almaty, Kazakhstan
Keywords: activated carbon, walnut shells, phosphoric acid activation, thermal post-treatment, electrochemical capacitor

Abstract

Activated carbons (ACs) have been prepared from chemical treatment of walnut shells (WS) precursor at various temperatures (400‒800 °C) by using phosphoric acid (H3PO4) as activating agent. Influence of activation temperature on the porosity development and capacitive properties of resulting carbons was investigated. Thermal post-treatment of carbons previously activated at moderate temperature, e.g. 400 °C allowed further structural and porosity modification. Then, these carbons were investigated by scanning electron microscopy, Raman spectroscopy, energydispersive X-ray spectroscopy, electrochemical techniques and low temperature nitrogen adsorption exhibiting high BET specific surface area of approximately 2100 m2 g-1 and a total pore volume up to 1.3 cm3 g-1. Carbon material obtained through activation by H3PO4 at 400 °C and post-treated at 800 °C was used to make electrodes which were implemented to realize AC/AC capacitor using 1 mol L-1 Li2SO4. The electrochemical capacitor demonstrated high capacitance of 123 F g-1 per mass of one electrode, reduced cell resistance and stable capacitance for 5000 galvanostatic charge/discharge cycles at 1.0 A g-1.

 

References

(1). E. Frackowiak, F. Béguin, Carbon 39 (2001) 937‒950. Crossref

(2). J. Yang, K. Qiu, Chem. Eng. J. 165 (2010) 209‒217. Crossref

(3). W-S. Choi, W-G. Shim, D-W. Ryu, M-J Hwang, H. Moon, Microp. Mesopor. Mat. 155 (2012) 274‒280. Crossref

(4). S. Azat, R. Busquets, V. Pavlenko, A. Kerimkulova, R. Whitby, Z. Mansurov, Applied Mechanics and Materials 467 (2014) 49‒51. Crossref

(5). V. Pavlenko, M. Biisenbayev, F. Béguin, Z. Mansurov, Development of active carbons’ porous structure derived from biomasses for their application in supercapacitors, Proc. Int. Conf. “Carbon-2015”, July 12-17 (2015), Dresden (Germany), p. 150.

(6). H. Benaddi, T.J. Bandosz, J. Jagiello, J.A. Schwarz, J.N. Rouzaud, D. Legras, F. Béguin, Carbon 38 (2000) 669–674. Crossref

(7). M. Jagtoyen, F. Derbyshire, Carbon 36 (1998) 1085–1097. Crossref

(8). B.S. Girgis, A.N.A. El-Hendawy, Microp. Mesopor. Mat. 52 (2002) 105–117. Crossref

(9). G. Zhu, X. Deng, M Hou, K. Suna, Y. Zhang, P. Li, F. Liang Fuel Process. Technol. 144 (2016) 255–261. Crossref

(10). X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, Z. Lei, Carbon 92 (2015) 1–10. Crossref

(11). V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, J. Mater. Sci. Mater. Electron. 26 (2015) 6319–6328. Crossref

(12). A.M. Puziy, O.I. Poddubnaya, A. Martínez- Alonso, A. Castro-Muñiz, F. Suárez-García, J.M.D. Tascón, Carbon 45 (2007) 1941–1950. Crossref

(13). M. Myglovets, O.I. Poddubnaya, O. Sevastyanova, M.E. Lindström, B. Gawdzik, M. Sobiesiak, M.M. Tsyba, V.I. Sapsay, D.O. Klymchuk, A.M. Puziy, Carbon 80 (2014) 771– 783. Crossref

(14). S. Leyva-Garcíaa, E. Morallón, D. Cazorla- Amorósa, F. Béguin, D. Lozano-Castelló, Carbon 69 (2014) 401–408. Crossref

(15). H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther, Carbon 42 (2004) 911–917. Crossref

(16). P. Nowicki, R. Pietrzak, H. Wachowska, Catal. Today 150 (2010) 107–114. Crossref

(17). Nazari, H. Abolghasemi, M. Esmaieli, E. Pouyaet, Appl. Surf. Sci. 375 (2016) 144–153. Crossref

(18). W.-S. Choi, W.-G. Shim, D.-W. Ryu, M.- J. Hwang, H. Moon, Micropor. Mesopor. Mat. 155 (2012) 274–280. Crossref

Published
2018-05-30
How to Cite
[1]
V. Pavlenko, “Temperature Dependent Characteristics of Activated Carbons from Walnut Shells for Improved Supercapacitor Performance”, Eurasian Chem. Tech. J., vol. 20, no. 2, pp. 99-105, May 2018.
Section
Articles