Influence of Magnetite Nanoparticles on Mechanical and Shielding Properties of Concrete

Authors

  • A. B. Lesbayev Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi Pr., Almaty, Kazakhstan https://orcid.org/0000-0001-8433-9279
  • B. Elouadi Universite De La Rochelle Avenue Michel Crépeau 17042 La Rochelle cédex 01, France https://orcid.org/0000-0003-4752-6301
  • T. V. Borbotko Belarusian State University of Informatics and Radioelectronics, Pietrusia Broŭki 6 str., Minsk, Belarus
  • S. M. Manakov al-Farabi Kazakh National University, 71 al-Farabi Pr., Almaty, Kazakhstan
  • S. T. Smagulova Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi Pr., Almaty, Kazakhstan
  • O. V. Boiprav Belarusian State University of Informatics and Radioelectronics, Pietrusia Broŭki 6 str., Minsk, Belarus
  • N. G. Prikhodko Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj666

Keywords:

magnetite, concrete, nanoparticles, flexural strength, magnetic hysteresis, shielding properties, microwave

Abstract

This paper presents an experimental study on the performance of shielding concrete with additives of magnetite nanoparticles. Two concretes with magnetite additives as well as one based concrete were tested. In order to achieve the high-performance concrete, all concrete mixes had a constant water/cement ratio of 0.45. In order to measure the mechanical properties, concrete samples were made in accordance with dimension such as 40 × 40 × 160 mm. But, for measurement of protective properties the concrete was made in accordance with dimension of rotary antennas such as 400 × 400 mm with a thickness of 10 mm. The nanoparticles Fe3O4 were synthesized by chemical condensation method. XRD have shown the presence of cubic structure of Fe3O4 spinel with crystallite size is equal to 130.0 Å. The TEM microphotograph shows that theFe3O4 nanoparticles are spherical, the range of sizes is 12‒30 nm. The magnetic retardation suggests that the magnetite nanoparticles have superparamagnetic properties. This is explained by the fact that under the influence of external magnetic field, they are single-domain, in other words, they become uniformly magnetized throughout the volume. The additives of magnetite nanoparticles at a concentration of 0.5% mass have not a negative effect on flexural strength. The samples with additives of magnetite nanoparticles showed better shielding of microwave radiation in the frequency range from 0.7 GHz to 13 GHz. The maximum efficiency of suppression of electromagnetic disturbance is equal to 19.9 dB at a frequency of 1.5 GHz with a thickness of 10 mm.

 

References

[1]. M.T. Ma, M. Kanda, M.L. Crawford, and E.B. Larsen, Proc. IEEE 73 (1985)
388‒411.

[2]. Zi Ping Wu, De Ming Cheng, Wen Jing Ma, Jing Wei Hu, Yan Hong Yin, Ying Yan Hu, Ye Sheng Li, Jian Gao Yang, and Qian Feng Xu, AIP Adv. 5 (2015) 067130. <a href="https://doi.org/10.1063/1.4922599">Crossref</a>

[3]. F.S. Huang, F.Y. Hung, C.M. Chiang, and T.S. Lui, Mater. Trans. 49 (2008) 655‒660. <a href="https://doi.org/10.2320/matertrans.MER2007252">Crossref</a>

[4]. O.V. Boiprav, L.M. Lynkov, T.V. Borbotko. Information-measuring system for evaluation of electromagnetic radiation power levels influence to its weakened by protective shields. Pribory i metody izmerenij [Devices and Methods of Measurements] (1) (2013) 19‒22 (in Russian).

[5]. A.V. Markin. Safety of radiations from the means of electronic computers: conjectures and reality. Zarubejnaya radioelektronika [Foreign radioelectronics] (1989) 102‒124 (in Russian).

[6]. M.O. Molodechkin, Forming method and characteristics of composite absorber of UHF range electromagnetic radiation on the basis of titanium dioxide. Doklady BGUIR [Journal "BSUIR reports"] 2015 4 (90) (2015) 109‒115 (in Russian). Available at: <a href="http://libeldoc.bsuir.by/handle/123456789/4889">URL</a>

[7]. A. Kaynak, Mater. Res. Bull. 31 (7) (1996) 845– 860. <a href="https://doi.org/10.1016/0025-5408(96)00038-4">Crossref</a>

[8]. E. Belousova, M. Abulkasem, H. Talib, LM Lynkov, Flexible designs of electromagnetic radiation screens based on moisture-containing technical carbon. Technical means of information protection: Abstracts of the XIII Belarusian- Russian Scientific and Technical Conference, May 5, 2015, Minsk. BSUIR, 2015. p. 56‒57 (in Russian).

[9]. Y.K. Kovneristy, I.Yu. Lazareva, A.A. Ravaev Materials absorbing microwave radiation. Moscow: Nauka, 1982. 164 p. (in Russian).

[10]. A.B. Lesbaev, B. Elouadi, S.M. Manakov, Z.A. Mansurov. Synthesis of magnetic fibers of polymethylmethacrylate with additives of magnetite nanoparticles. Promyshlennost' Kazahstana [Industry of Kazakhstan] 2 (95) (2016) 50‒54 (in Russian).

[11]. S. Ouda, HBRC Journal (11) (3) (2015) 328– 338. <a href="https://doi.org/10.1016/j.hbrcj.2014.06.010">Crossref</a>

[12]. E. Horszczaruka, P. Sikoraa, P. Zaporowski, Procedia Engineering 108 (2015) 39‒46. <a href="https://doi.org/10.1016/j.proeng.2015.06.117">Crossref</a>

[13]. A.B. Lesbayev, B. Elouadi, B.T. Lesbayev, S.M. Manakov, G. Smagulova, N.G. Prikhodko, Procedia Manufacturing 12 ( 2017 ) 28–32. <a href="https://doi.org/10.1016/j.promfg.2017.08.005">Crossref</a>

[14]. B. Šavija, H. Zhang, E. Schlangen, Materials 10 (2017) 863. <a href="https://doi.org/10.3390/ma10080863">Crossref</a>

[15]. I. Kong, S.H. Ahmada, M.H. Abdullah, D. Hui, A.N. Yusoff, D. Puryanti, J. Magn. Magn. Mater. 322 (2010) 3401–3409. <a href="https://doi.org/10.1016/j.jmmm.2010.06.036">Crossref</a>

[16]. ASTM C 348-02. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. 2002. 6P. ASTM International, United States.

Downloads

Published

2017-09-15

How to Cite

Lesbayev, A. B., Elouadi, B., Borbotko, T. V., Manakov, S. M., Smagulova, S. T., Boiprav, O. V., & Prikhodko, N. G. (2017). Influence of Magnetite Nanoparticles on Mechanical and Shielding Properties of Concrete. Eurasian Chemico-Technological Journal, 19(3), 223–229. https://doi.org/10.18321/ectj666

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>