Advanced Characterization of Bituminous Binders: Comparing Industrial and Paving-Grade Bituminous Binders
DOI:
https://doi.org/10.18321/ectj1033Keywords:
industrial bitumen, paving-grade bitumen, chemical analysis, thermal analysis, rheological analysisAbstract
This paper deals with the fundamental differences between industrial and paving-grade bituminous binders. The paper is presented in two main sections: 1) a review of the materials’ colloidal structure and the required properties for the industrial and paving applications; 2) a wide range of experimental tests with which the bituminous binders were studied and compared. In this research, a 160/220 industrial bitumen was studied and compared to a paving-grade bitumen with the same penetration and with a lower penetration, 70/100 one. The research consisted of physical, chemical, thermal, microstructural, and rheological analysis to provide a comprehensive understanding of these bituminous binders of diverse applications. Overall, the comparison of the tests’ results indicated that while the asphaltene content and its characteristics have a great influence on the bitumen’s properties, it is not the only fundamental factor. During the study of the chemical structures via Atomic Force Microscopy (AFM), it was found that the Peri phase (attributed to the resins) also plays an important role, defining the bitumen’s physical visco-elastic properties. In fact, from a microstructural point of view using AFM a significant difference was notified between the industrial bitumen and the paving-grade ones. These differences allow the paving-grade bitumens to be more elastic and ductile compared to the industrial bitumen.
References
(1). The bitumen industry: a global perspective: production, chemistry, use, specification and occupational exposure, 3rd ed., Asphalt Institute Inc. and European Bitumen Association – Eurobitume, 2015. ISBN: 9781934154731
(2). The asphalt paving industry: a global perspective, 3rd ed., National Asphalt Pavement Association and European Asphalt Pavement Association. 2011. ISBN 0-914313-06-1.
(3). The bitumen roofing industry ‒ a global perspective: production, use, properties, specifications and occupational exposure, 2nd ed., The Asphalt Roofing Manufacturers Association, The Bitumen Waterproofing Association, The National Roofing Contractors Association, The Roof Coatings Manufacturers Association, 2011. ISBN 978-0-9815948-3-5
(4). Oxidized Bitumen, Raha Bitumen Company, available online 27/03/2020 at: Web-Page
(5). Road paving bitumen, Alma Petroli, available online 27/03/2020 at: Web-Page
(6). C. Oliviero Rossi, P. Caputo, S. Ashimova, A. Fabozzi, G. D’Errico, R. Angelico, Appl. Sci. 8 (2018) 1405. Crossref
(7). Y. Becker, M.P. Méndez, Y. Rodríguez, Polymer modified asphalt. Vision Tecnologica, 9 (2001) 39‒50.
(8). P. Caputo, M. Porto, V. Loise, B. Teltayev, C. Oliviero Rossi, Eurasian Chem.- Technol. J. 21, (2019) 235‒239. Crossref
(9). Bitumen 160/220 for industrial uses, Web-Page, 2017 (Accessed 18 March 2020).
(10). N. Nciri, N. Kim, N. Cho, Mater. Chem. Phys. 193 (2017) 477‒495. Crossref
(11). C. Giavarini, P. De Filippis, M.L. Santarelli, M. Scarsella, Fuel 75 (1996) 681‒686. Crossref
(12). J. Read, D. Whiteoak, R. Hunter, Robert Hunter, The Shell Bitumen Handbook. Thomas Telford Publishing; 5th edition, 2003. ISBN-10: 072773220X
(13). D. Lesueur, Adv. Colloid Interfac. 145 (2009) 42‒82. Crossref
(14). H. Zhang, Building Materials in Civil Engineering. Woodhead Publishing Series in Civil and Structural Engineering 423 (2011) 253‒288. Crossref
(15). C. Oliviero Rossi, P. Caputo, G. De Luca, L. Maiuolo, S. Eskandarsefat, C. Sangiorgi, Appl Sci. 8 (2018) 229. Crossref
(16). C. Oliviero Rossi, P. Caputo, V. Loise, S. Ashimova, B. Teltayev, C. Sangiorgi, (2019) A New Green Rejuvenator: Evaluation of Structural Changes of Aged and Recycled Bitumens by Means of Rheology and NMR. In: Poulikakos L., Cannone Falchetto A., Wistuba M., Hofko B., Porot L., Di Benedetto H. (eds) RILEM 252- CMB Symposium. RILEM 252-CMB 2018. RILEM Bookseries, vol 20. Springer, Cham. Crossref
(17). P. Caputo, V. Loise, S. Ashimova, B. Teltayev, R. Vaiana, C. Oliviero Rossi, Colloid. Surface. A 574 (2019) 154–161. Crossref
(18). J-F. Masson, V. Leblond, J. Margeson, J. Microsc. 221 (2006) 17–29. Crossref
(19). A.T. Pauli, J.F. Branthaver, R.E. Robertson, W. Grimes, C.M. Eggleston. Heavy Oil and Resid Compatibility and Stability. San Diego, Calif, USA: Division of Petroleum Chemistry, American Chemical Society; 2001. Atomic force microscopy investigation of SHRP asphalts; pp. 110–114.
(20). P. Calandra, P. Caputo, M.P. De Santo, L. Todaro, V. Turco Liveri, C. Oliviero Rossi, Constr. Build. Mater. 199 (2019) 288–297. Crossref
(21). A.L. Lyne, V. Wallqvist, B. Birgisson, Fuel 113 (2013) 248–256. Crossref
(22). L. Loeber, O. Sutton, J. Morel, J.-M. Valleton, G. Muller, J. Microsc. 182 (1996) 32–39. Crossref
(23). A. Jager, R. Lackner, C. Eisenmenger-Sittner, R. Blab, PAMM 4 (2004) 400–401. Crossref
(24). A.T. Pauli, R.W. Grimes, A.G. Beemer, T.F. Turner, J.F. Branthaver, Int. J. Pavement Eng. 12 (2011) 291–309. Crossref
(25). P. Mikhailenko, H. Kadhim, H. Baaj, S. Tighe, J. Microsc. 267 (2017) 347–355. DCrossref
(26). The Differences Between Atomic Force Microscopy and Scanning Electron Microscopy, AZO MATERIALS, Web-Page , 2015 (Accessed 18 April 2020).
(27). L. Loeber, J. Morel, O. Sutton, J.-M. Valleton, G. Muller, Atomic Force Microscopy/Scanning Tunneling Microscopy 3 (1999) 205–208. Crossref
(28). K. Pospíšil, A. Frýbort, A. Kratochvíl, J. Macháčková, Trans. Transp. Sci. 1 (2008) 13– 20. Crossref
(29). P. Caputo, G.A. Ranieri, N. Godbert, I. Aiello, A. Tagarelli, C. Oliviero Rossi, Mediterranean Journal of Chemistry 7 (2018) 259–266. Crossref
(30). G.D. Airey, Int. J. Pavement Eng. 5 (2004) 137– 151. Crossref
(31). V.O. Bulatovic, V. Rek, J. Markovic, Polym. Eng. Sci. 54 (2014) 1056‒1065. Crossref
(32). M. Porto, P. Caputo, V. Loise, G. De Filpo, C. Oliviero Rossi, P. Calandra, Appl. Sci. 9 (2019) 5564. Crossref
(33). C. Oliviero Rossi, P. Caputo, V. Loise, D. Miriello, B. Teltayev, R. Angelico, Colloid. Surface. A 532 (2017) 618–624. Crossref
(34). M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, C. Oliviero Rossi, Appl. Sci. 9 (2019) 742. Crossref
(35). National Academies of Sciences, Engineering, and Medicine. 2011. Special Mixture Design Considerations and Methods for Warm-Mix Asphalt: A Supplement to NCHRP Report 673: A Manual for Design of Hot-Mix Asphalt with Commentary. Washington, DC: The National Academies Press. Crossref
(36). G.D. Airey, J. Mater. Sci. 39 (2004) 951‒959. Crossref
(37). G.D. Airey, Road Mater. Pavement 3 (2002) 403‒424. Crossref
(38). H. Soenen, T. Blomberg, T. Pellinen, O. Laukkanen, Road Mater. Pavement 14 (2013) 2–11. Crossref
(39). The multiple stress creep recovery (MSCR) procedure. TechBrief, Federal Highway Administration, FHWA-HIF-11-038, April 2011.
(40). S. Arafat Yero, M.Rosli Hainin, ARPN Journal of Science and Technology 2 (2012) 422–426.
(41). G.A.J. Mturi, M. Nkgapele, Force ductility – a 5 year feedback of performance results. Abstracts of the 32nd Southern African Transport Conference, 8–11 July 2013, Pretoria, South Africa. ISBN 978-1-920017-62-0
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.