How Organic Waste Improves Bitumen’s Characteristics

Authors

  • P. Caputo University of Calabria, Via P. Bucci, Cubo 14/D, Rende (CS), 87036, Italy & UdR INSTM della Calabria
  • M. Porto University of Calabria, Via P. Bucci, Cubo 14/D, Rende (CS), 87036, Italy & UdR INSTM della Calabria
  • V. Loise University of Calabria, Via P. Bucci, Cubo 14/D, Rende (CS), 87036, Italy & UdR INSTM della Calabria
  • A. Abe University of Calabria, Via P. Bucci, Cubo 14/D, Rende (CS), 87036, Italy & UdR INSTM della Calabria
  • B. Teltayev Kazakhstan Highway Research Institute Nurpeisova Str. 2a, Almaty 050061, Kazakhstan
  • P. Calandra CNR-ISMN, National Research Council, Institute of Nanostructured Materials, Via Salaria km 29.300, 00015, Monterotondo, Italy
  • C. Oliviero Rossi University of Calabria, Via P. Bucci, Cubo 14/D, Rende (CS), 87036, Italy & UdR INSTM della Calabria

DOI:

https://doi.org/10.18321/ectj1106

Abstract

The organic fraction derived from the differentiated collection of urban waste is mainly composed of fatty acids, medium molecular weight hydrocarbons and cellulose. This peculiar composition gave us insight into the possible use of organic waste to improve bitumen’s characteristics (possible antioxidant, regenerating and/ or viscosifying additive for road pavements). The issue of the disposal of organic waste is a global one and it’s constantly of increasing concern. This study looks to alleviate this problem by finding ways for this waste fraction to be utilized for the greater good- in this case, as an additive for bitumen binder in road pavements. The present study is focused on the use of waste as it is and waste treated by the FENTON process (treatment with ferrous sulphate and hydrogen peroxide solution). Dynamic Shear Rheology (DSR) and aging tests (Rolling Thin Film Oven Test, RTFOT) showed that two of the additives tested in this study proved effective: one can be utilised as a viscosifying agent and the other can be us ed as a filler.

References

(1). M. Batayneh, I. Marie, I. Asi, Waste Manage. 27 (2007) 1870‒1876. Crossref DOI: https://doi.org/10.1016/j.wasman.2006.07.026

(2). J. Bolden, T. Abu-Lebdeh, E. Fini, Am. J. Environ. Sci. 9 (2013) 14–24. Crossref DOI: https://doi.org/10.1038/scientificamericanmind0713-14b

(3). M.T. Rahman, A. Mohajerani, F. Giustozzi, Materials 13 (2020) 1495. Crossref DOI: https://doi.org/10.3390/ma13071495

(4). C. Oliviero Rossi, P. Caputo, V. Loise, D. Miriello, B. Teltayev, R. Angelico, Colloid. Surface. A 532 (2017) 618–624. Crossref DOI: https://doi.org/10.1016/j.colsurfa.2017.01.025

(5). R. Cremiato, M.L. Mastellone, C. Tagliaferri, L. Zaccariello, P. Lettieri, Renew. Energ. 124 (2018) 180–188. Crossref DOI: https://doi.org/10.1016/j.renene.2017.06.033

(6). T. Kuhlman, J. Farrington, Sustainability 2 (2010) 3436–3448. Crossref DOI: https://doi.org/10.3390/su2113436

(7). M.M.A. Aziz, M.T. Rahman, M.R. Hainin, W.A. Bakar, Constr. Build. Mater. 84 (2015) 315–319. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.068

(8). T. Abu-Lebdeh, S. Hamoush, W. Heard, B. Zornig, Constr. Build. Mater. 25 (2011) 39–46. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2010.06.059

(9). M.N. James, W. Choi, T. Abu-Lebdeh, Am. J. Eng. Appl. Sci 4 (2011) 201–208. Crossref DOI: https://doi.org/10.3844/ajeassp.2011.201.208

(10). S. Hamoush, T. Abu-Lebdeh, M. Picornell, S. Amer, Constr. Build. Mater. 25 (2011) 4006– 4016. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2011.04.035

(11). G. King, H. King, R. Pavlvoich, A. Epps, P. Kandhal, Additives in asphalt, AAPT, 68A (1986) 32–69.

(12). Y. Xue, H. Hou, S. Zhu, J. Zha, Constr. Build. Mater. 23 (2009) 989–996. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2008.05.009

(13). N.S. Mashaan, A. Rezagholilou, H. Nikraz, A. Chegenizadeh, International Journal of Advances in Science, Engineering and Technology 7 (2019) 58–60.

(14). R. Tauste, F. Moreno-Navarro, M. Sol- Sánchez, M.C. Rubio-Gámez, Constr. Build. Mater. 192 (2018) 593–609. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.169

(15). O. Sirin, D.K. Paul, E. Kassem, Adv. Civil Eng. 2018, Article ID 3428961. Crossref DOI: https://doi.org/10.1155/2018/3428961

(16). I. Gawel, F. Czechowski, J. Kosno, Constr. Build. Mater. 110 (2016) 42‒47. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.004

(17). M.H. Nahi, I.B. Kamaruddin, N. Madzlan, Appl. Mech. Mater. 567 (2014) 539‒544. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMM.567.539

(18). C. Oliviero Rossi, P. Caputo, S. Ashimova, G. D’Errico, R. Angelico, Appl. Sci. 8 (2018) 1405. Crossref DOI: https://doi.org/10.3390/app8081405

(19). J. Claine Petersen, Developments in Petroleum Science 40 (2000) 363‒399. Crossref DOI: https://doi.org/10.1016/S0376-7361(09)70285-7

(20). A. Behnood, J. Olek, Constr. Build. Mater. 157 (2017) 635‒646. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.138

(21). R. Ghabchi, S. Rani, M. Zaman, S. Ashik Ali, Int. J. Pavement Eng. 22 (2021) 418‒431. Crossref DOI: https://doi.org/10.1080/10298436.2019.1614584

(22). A. Bocoum, S. Hosseinnezhad, E.H. Fini. Investigating effect of amine based additives on asphalt rubber rheological properties. In Asphalt Pavements ‒ Proceedings of the International Conference on Asphalt Pavements, ISAP 2014 (pp. 921-931). Crossref DOI: https://doi.org/10.1201/b17219-113

(23). C.O. Rossi, P. Caputo, V. Loise, S. Ashimova, B. Teltayev, C. Sangiorgi (2019) A New Green Rejuvenator: Evaluation of Structural Changes of Aged and Recycled Bitumens by Means of Rheology and NMR. In: Poulikakos L., Cannone Falchetto A., Wistuba M., Hofko B., Porot L., Di Benedetto H. (eds), RILEM Bookseries, vol 20. Crossref DOI: https://doi.org/10.1007/978-3-030-00476-7_28

(24). A.A. Abe, C. Oliviero Rossi, P. Caputo, M. P. De Santo, N. Godbert, I. Aiello, Materials 14 (2021) 1622. Crossref DOI: https://doi.org/10.3390/ma14071622

(25). M. Porto, P. Caputo, V. Loise, G. De Filpo, C. Oliviero Rossi, P. Calandra, Appl. Sci. 9 (2019) 5564. Crossref DOI: https://doi.org/10.3390/app9245564

(26). J. Król, K. Kowalski, Ł. Niczke, P. Radziszewski, Constr. Build. Mater. 114 (2016) 194–203. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.086

(27). Y. Cheng, W. Wang, Y. Gong, S. Wang, S. Yang, X. Sun, Materials 11 (2018) 2488. Crossref DOI: https://doi.org/10.3390/ma11122488

(28). P. Caputo, M. Porto, P. Calandra, M.P. De Santo, C. Oliviero Rossi, Mol. Cryst. Liq. Cryst. 675 (2018) 68–74. Crossref DOI: https://doi.org/10.1080/15421406.2019.1606979

(29). P. Caputo, V. Loise, A. Crispini, C. Sangiorgi, F. Scarpelli, C. Oliviero Rossi, Colloid. Surface. A 571 (2019) 50–54. Crossref DOI: https://doi.org/10.1016/j.colsurfa.2019.03.059

(30). V. Loise, P. Caputo, M. Porto, P. Calandra, R. Angelico, C. Oliviero Rossi, Appl. Sci. 9 (2019) 4316. Crossref DOI: https://doi.org/10.3390/app9204316

(31). L. Noferinia, A. Simone, C. Sangiorgi, F. Mazzotta, Int. J. Pavement Res. Technol. 10 (2017) 322–332. Crossref DOI: https://doi.org/10.1016/j.ijprt.2017.03.011

(32). W. Huang, Y. Guo, Y. Zheng, Q. Ding, C. Sun, J. Yu, M. Zhu, H. Yu, Constr. Build. Mater. 273 (2021) 121525. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2020.121525

(33). F.J. Ortega, F.J. Navarro, M. Jasso, L. Zanzotto, Constr. Build. Mater. 222 (2019) 766–775. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.117

(34). G. Pipintakos, H.Y. Vincent Ching, H. Soenen, P. Sjövall, U. Mühlich, S. Van Doorslaer, A. Varveri, W. Van den bergh, X. Lu, Constr. Build. Mater. 260 (2020) 119702. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2020.119702

(35). P. Caputo, M. Porto, V. Loise, B. Teltayev, C. Oliviero Rossi, Eurasian Chem.-Technol. J. 21 (2019) 235–239. Crossref DOI: https://doi.org/10.18321/ectj864

(36). J. Baena-González, A. Santamaria-Echart, J.L. Aguirre, S. González, Waste Manage. 118 (2020) 139–149. Crossref DOI: https://doi.org/10.1016/j.wasman.2020.08.035

(37). A. Sreeram, Z. Leng, R.K. Padhan, X. Qu, HKIE Transactions 25 (2018) 237–247. Crossref DOI: https://doi.org/10.1080/1023697X.2018.1534617

(38). J. Zhu, C. Fan, H. Shi, L. Shi, J. Ind. Ecol. 23 (2018) 110–118. Crossref DOI: https://doi.org/10.1111/jiec.12754

(39). F. Di Maria (2020) Circular Economy in Italy. In: Ghosh S. (eds) Circular Economy: Global Perspective. Springer, Singapore. Crossref DOI: https://doi.org/10.1007/978-981-15-1052-6_11

(40). M. Robaina, J. Villar, E.T. Pereira, Environ. Sci. Pollut. Res. 27 (2020) 12566–12578. Crossref DOI: https://doi.org/10.1007/s11356-020-07847-9

(41). G. Lonca, P. Lesage, G. Majeau-Bettez, S. Bernard, M. Margni, Resour. Conserv. Recy. 162 (2020) 105013. Crossref DOI: https://doi.org/10.1016/j.resconrec.2020.105013

(42). W. Koppenol, Free Radical Bio. Med. 15 (1993) 645–651. Crossref DOI: https://doi.org/10.1016/0891-5849(93)90168-T

(43). R.A. Salvino, G. Celebre, G. De Luca, Appl. Sci. 11 (2021) 2267. Crossref DOI: https://doi.org/10.3390/app11052267

(44). B. Hofko, A. Cannone Falchetto, J. Grenfell, L. Huber, X. Lu, L. Porot, L.D. Poulikakos, Z. You, Road Mater. Pavement Design 18 (2017) 108‒117. Crossref DOI: https://doi.org/10.1080/14680629.2017.1304268

(45). A. Ongel, M. Hugener, Constr. Build. Mater 94 (2015) 467‒474. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.030

(46). A. Grilli, M. Iorio Gnisci, M. Bocci, Constr. Build. Mater 136 (2017) 474‒481. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.027

(47). S. Ren, X. Liu, H. Wang, W. Fan, S. Erkens, J. Clean. Prod. 253 (2020) 120048. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.120048

(48). J. Tang, C. Zhu, H. Zhang, G. Xu, F. Xiao, S. Amirkhanian, Constr. Build. Mater 194 (2019) 238‒246. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.028

(49). D. Zhang, Z. Chen, H. Zhang, C. Wei, Constr. Build. Mater 188 (2018) 409‒416. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.136

(50). N. Liu, K. Yan, L. You, M. Chen, Constr. Build. Mater 189 (2018) 460‒469. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.206

(51). ANAS. Special Tender Specification. In Road Paving; Technical Standard 2009.

(52). L. Bohlin, J. Colloid Interf. Sci. 74 (1980) 423– 434. Crossref DOI: https://doi.org/10.1016/0021-9797(80)90211-8

(53). H.H. Winter, Polym. Eng. Sci. 27 (1987) 1698– 1702. Crossref DOI: https://doi.org/10.1002/pen.760272209

(54). D. Gabriele, B. de Cindio, P.A. D’Antona, Rheol. Acta 40 (2001) 120–127. Crossref DOI: https://doi.org/10.1007/s003970000139

(55). C. Oliviero Rossi, S. Ashimova, P. Calandra, M.P. De Santo, R. Angelico, Appl. Sci. 7 (2017) 779. Crossref DOI: https://doi.org/10.3390/app7080779

(56). P. Calandra, P. Caputo, M.P. De Santo, L. Todaro, V. Turco Liveri, C. Oliviero Rossi, Constr. Build. Mater 199 (2019) 288‒297. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.277

Downloads

Published

10-11-2021

How to Cite

Caputo, P., Porto, M., Loise, V., Abe, A., Teltayev, B., Calandra, P., & Oliviero Rossi, C. (2021). How Organic Waste Improves Bitumen’s Characteristics. Eurasian Chemico-Technological Journal, 23(3), 227–233. https://doi.org/10.18321/ectj1106

Issue

Section

Articles