Physical Chemistry Supports Circular Economy: Toward a Viable Use of Products from the Pyrolysis of a Refuse-Derived Fuel and Granulated Scrap Tire Rubber as Bitumen Additives
DOI:
https://doi.org/10.18321/ectj1520Keywords:
char, pyrolysis, circular economy, waste disposal, anti-aging, bitumen, oilAbstract
The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.
References
(1). N. Gudde, J.-F. Larivé, M. Yugo. CO2 Reduction Technologies. Opportunities within the EU refining system (2030/2050). Report no. 8/19; Concawe: Brussels, Belgium, July 2019.
(2). Manifesto for a Resource-Efficient Europe. URL
(3). M. Geissdoerfer, P. Savaget, N.M.P. Bocken, E.J. Hultink, J. Clean. Prod. 143 (2017) 757–768. Crossref
(4). O. Onel, A.M. Niziolek, M.M. Faruque Hasan, C.A. Floudas, Comput. Chem. Eng. 71 (2014) 636–647. Crossref
(5). Y. Bayar, M.D. Gavriletea, S. Sauer, D. Paun, Sustainability 13 (2021) 656. Crossref
(6). M. Abis, M. Bruno, K. Kuchta, F-G. Simon, R. Grönholm, M. Hoppe, S. Fiore, Energies 13 (2010) 6412. Crossref
(7). Italian ISPRA. “Rapporti 380/2022”, 2022 ISBN 978-88-448-1145-7.
(8). Le Courtois, A. (2012) ‘Municipal Solid Waste: turning a problem into resource’, Private Sector & Development, 1–28. URL
(9). L. Cirrincione, M. La Gennusa, G. Peri, G. Rizzo, G. Scaccianoce, Sustainability 14 (2022) 5272. Crossref
(10). S. Nanda, F. Berruti, Environ. Chem. Lett. 19 (2021) 1433–1456. Crossref
(11). A. Siddiqua, J.N. Hahladakis, W. Ahmed, K.A. Al Attiya, Environ. Sci. Pollut. Res. 29 (2022) 58514–58536. Crossref
(12). G. Cusano, S. Roudier, F. Neuwahl, et al., Best Available Techniques (BAT) reference document for waste incineration – Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), 2019. Crossref
(13). D. Chen, L. Yin, H. Wang, P. He, Waste Manage. 34 (2014) 2466–2486. Crossref
(14). M. Gholizadeh, C. Li, S. Zhang, Y. Wang, S. Niu, Y. Li, X. Hu, Sustain. Energy Fuels 4 (2020) 5885–5915. Crossref
(15). S.D.A. Sharuddin, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, Energy Convers. Manag. 115 (2016) 308–326. Crossref
(16). T. Kan, V. Strezov, T.J. Evans, Renew. Sust. Energ. Rev. 57 (2016) 1126–1140. Crossref
(17). D. Li, S. Lei, F. Lin, L. Zhong, et al. Energy 213 (2020) 119038. Crossref
(18). W. Han, D. Han, H. Chen, Polymers 15 (2023) 1604. Crossref
(19). O.S. Djandja, Z-C. Wang, F. Wang, Y-P. Xu, P-G. Duan, Ind. Eng. Chem. Res. 59 (2020) 16939−16956. Crossref
(20). T. Maqsood, J. Dai, Y. Zhang, M. Guang, B. Li, J. Anal. Appl. Pyrolysis 159 (2021) 105295. Crossref
(21). A.T. Sipra, N. Gao, H. Sarwar, Fuel Process. Technol. 175 (2018) 131–147. Crossref
(22). J. Aguado, D.P. Serrano, G. San Miguel, M.C. Castro, S. Madrid, J. Anal. Appl. Pyrolysis 79 (2007) 415–423. Crossref
(23). A.K. Hossain, P.A. Davies, Renew. Sust. Energ. Rev. 21 (2013) 165–189. Crossref
(24). Faisal Abnisa, Wan Mohd Ashri Wan Daud, Energy Convers. Manag. 87 (2014) 71–85. Crossref
(25). European Asphalt Pavement Association – EAPA. Asphalt in Figures; EAPA: Brussels, Belgium, 2018. URL
(26). G. Tarsi, P. Tataranni, C. Sangiorgi, Materials 13 (2020) 4052. Crossref
(27). P. Caputo, M. Porto, R. Angelico, V. Loise, P. Calandra, C. Oliviero Rossi, Adv. Colloid Interface Sci. 285 (2020) 102283. Crossref
(28). P. Calandra, V. Loise, M. Porto, C. Oliviero Rossi, D. Lombardo, P. Caputo, Appl. Sci. 10 (2020) 5230. Crossref
(29). S. Zhao, H. B. Huang, X.P. Ye, X. Shu, X. Jia, Fuel 133 (2014) 52–62. Crossref
(30). S. Gupta, H.W. Kua, H.J. Koh, Sci. Total Environ. 619–620 (2017) 419-435. Crossref
(31). M. Naskar, T.K. Chaki, K.S. Reddy, Thermochim. Acta 509 (2010) 128–134. Crossref
(32). A. Kumar, R. Choudhary, A. Kumar. PLoSONE 16 (2021) e0256030. Crossref
(33). W. Dong, F. Ma, C. Li, Z. Fu, Y. Huang, J. Liu, Coatings 10 (2020) 1037. Crossref
(34). X. Zhang, K. Zhang, C. Wu, K. Liu, K. Jiang, Constr. Build. Mater. 262 (2020) 120528. Crossref
(35). K.A. Masri, S.M.Z. Nur Syafiqah, M.A. Seman, P.J. Ramadhansyah, H. Yaacob, N. Mashros, IOP Conf. Ser.: Earth Environ. Sci. 682 (2021) 012055. Crossref
(36). P.J. Ramadhansyah, K.A. Masri, A.H. Norhidayah, M.R. Hainin, M.W. Muhammad Naqiuddin, Y. Haryati, M.K.I.M. Satar, A. Juraidah, IOP Conf. Ser.: Mater. Sci. Eng. 712 (2020) 012023. Crossref
(37). Y. Liu, Z. Qiu, C. Zhao, Z. Nie, H. Zhong, X. Zhao, S. Liu, X. Xing, RSC Adv. 10 (2020) 10471. Crossref
(38). A. Tomczyk, Z. Sokołowska, Rev. Environ. Sci. Biotechnol. 19 (2020) 191–215. Crossref
(39). X. Lu, H. Soenen, P. Sjovall, G. Pipintakos, Fuel 304 (2021) 121426. Crossref
(40). E. Chailleux, C. Queffélec, I. Borghol, F. Farcas, S. Marceau, B. Bujoli, Constr. Build Mater. 271 (2021) 121528. Crossref
(41). S. Abbate, R. Gangemi, F. Lebon, G. Longhi, M. Passarello, A. Ruggirello, V. Turco Liveri, Vib. Spectrosc. 60 (2012) 54–62. Crossref
(42). P. Calandra, A. Longo, A. Ruggirello, V. Turco Liveri, J. Phys. Chem. B 108 (2004) 8260–8268. Crossref
(43). P. Calandra, G. Di Marco, A. Ruggirello, V. Turco Liveri, J. Colloid Interface Sci. 336 (2009) 176–182. Crossref
(44). A. Longo, P. Calandra, M.P. Casaletto, C. Giordano, A. Venezia, V. Turco Liveri, Mater. Chem. Phys. 96 (2006) 66–72. Crossref
(45). S.C. Thickett, P.B. Zetterlund, ACS Macro Lett. 2 (2013) 630–634. Crossref
(46). P. Calandra, E. Caponetti, D. Chillura Martino, P. D’Angelo, A. Minore, V. Turco Liveri, J. Mol. Struct. 522 (2000) 165–178. Crossref
(47). J.C. Petersen, Chapter 14 Chemical Composition of Asphalt as Related to Asphalt Durability, in: T.F. Yen, G.V. Chilingarian (Eds.), Developments in Petroleum Science 40 (2000) 363–399. Crossref
(48). H. Asli, E. Ahmadinia, M. Zargar, M.R. Karim, Constr. Build. Mater. 37 (2012) 389–405. Crossref
(49). C.D. Dedene, Z. You, Int. J. Pavement Res. Technol. 7 (2014) 145–152.
(50). P. Calandra, P. Caputo, M.P. De Santo, L. Todaro, V. Turco Liveri, C. Oliviero Rossi, Constr. Build. Mater. 199 (2019) 288–297. Crossref
(51). X. Zhang, K. Zhang, C. Wuc, K. Liu, K. Jiang, Constr. Build. Mater. 262 (2020) 120528. Crossref
(52). P. Calandra, J. Mol. Liq. 310 (2020) 113186. Crossref
(53). P. Calandra, A. Mandanici, V. Turco Liveri, RSC Adv. 3 (2013) 5148. Crossref
(54). The Eurobitume Life-Cycle Inventory for Bitumen, Version 3.1. URL
(55). Q. Tushar, J. Santos, G. Zhang, M.A. Bhuiyan, F. Giustozzi, J. Environ. Manage. 323 (2022) 116289. Crossref
(56). A. Farina, M.C. Zanetti, E. Santagata, G.A. Blengini, Resour Conserv Recycl. 117 (2017) 204–212. Crossref
(57). L. You, Z. Long, Z. You, D. Ge, X. Yang, F. Xu, M. Hashemi, A. Diab, J. Traffic Transp. Eng. 9 (2022) 742–764. Crossref
(58). P. Caputo, M. Porto, V. Loise, B. Teltayev, C. Oliviero Rossi, Eurasian Chem.-Technol. J. 21 (2019) 235‒239. Crossref
(59). H.F. Hassan, Constr. Build. Mater. 19 (2005) 91–98. Crossref
(60). H.F. Hassan, K. Al-Shamsi, Int. J. Pavement Eng. 11 (2010) 575–582. Crossref
(61). A. Guarin, A. Khan, A.A. Butt, B. Birgisson, N. Kringos, Constr. Build. Mater. 106 (2016) 133‒139. Crossref
(62). G. Xinlin, W. Zhang, PloS one 16 (2021) e0247390. Crossref
(63). H.A. Rondon-Quintana, F.A. Reyes-Lizcano, S.B. Chaves-Pabon, J.G. Bastidas-Martinez, C.A. Zafra-Mejia, Sustainability 14 (2022) 4745. Crossref
(64). B.B. Teltayev, A.A. Kalybai, G.G. Izmailova, C.O. Rossi, E.D. Amirbayev, E.S. Sivokhina, Eurasian Chem.-Technol. J. 21 (2019) 317‒324. Crossref
(65). M.N. Uddin, K. Techato, J. Taweekun, Md M. Rahman, M.G. Rasul, T.M.I. Mahlia, S.M. Ashrafur, Energies 11 (2018) 3115. Crossref
(66). V. Gargiulo, M. Alfe, G. Ruoppolo, F. Cammarota, C. Oliviero Rossi, V. Loise, et al., Colloids Surf. A 676 (2023) 132199. Crossref
(67). M. Alfe, V. Gargiulo, M. Porto, R. Migliaccio, A. Le Pera, M. Sellaro, et al., Molecules 27 (2022) 8114. Crossref
(68). R. Taylor, G. Airey. “Rheology of Bitumens.” In The Shell Bitumen Handbook, 6th ed. ICE Publishing, 2015.
(69). N. Saboo, P. Kumar, Int. J. Pavement Res. Technol. 9 (2016) 63–72. Crossref
(70). E. Remisova, V. Zatkalíková, S. František, Civ. Environ. Eng. 12 (2016) 13–20. Crossref
(71). P. Caputo, C. Oliviero Rossi, Appl. Sci. 11. 4 (2021) 6528. Crossref
(72). B. Danon, P. van der Gryp, C.E. Schwarz, J.F. Görgens, J. Anal. Appl. Pyrolysis 112 (2015) 1–13. Crossref
(73). V. Loise, P. Calandra, A.A. Abe, M. Porto, C. Oliviero Rossi, M. Davoli, P. Caputo, J. Mol. Liq. 3391 (2021) 116742. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.