Mathematical Model to Predict the Affinity Between Aggregate/Bitumen

Authors

  • P. Caputo Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 14/D, 87036 Arcavacata di Rende (CS), Italy
  • G. A. Ranieri Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 14/D, 87036 Arcavacata di Rende (CS), Italy
  • D. Miriello Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
  • A. Bloise Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
  • A. A. Abe Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 14/D, 87036 Arcavacata di Rende (CS), Italy
  • B. Teltayev Kazakhstan Highway Research Institute, 2A Nurpeisova Str., 050061, Almaty, Kazakhstan
  • C. Oliviero Rossi Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 14/D, 87036 Arcavacata di Rende (CS), Italy

DOI:

https://doi.org/10.18321/ectj979

Keywords:

Bitumen/aggregate affinity, Rolling Bottle Test, Boiling Test, X-ray powder diffraction

Abstract

The stones used for the construction of road surfaces have a complex mineralogical and hence chemical composition. They are made up of several types of minerals put together. This generates a significant difference in adhesion with the bituminous binder. The aim of this study is to create a mathematical model able to predict the adhesion between bitumen and stone on the basis of contact angle measurements made on different pure minerals. The mathematical model used was developed keeping in mind the exponential bond that the minerals have with the corresponding bond angle. This model also confirmed the established fact that the lower the value of Δ, the better the adhesion between the bitumen and the aggregate.

References

(1). S. Rozeveld, E. Shin, A. Bhurke, L. France, L. Drzal, Microsc. Res. Technol. 38 (1997) 529–543. Crossref DOI: https://doi.org/10.1002/(SICI)1097-0029(19970901)38:5<529::AID-JEMT11>3.0.CO;2-O

(2). J.B. Król, K.J. Kowalski, L. Niczke, P. Radziszewski, Constr. Build. Mat. 114 (2016) 194–203. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.086

(3). C. Oliviero Rossi, P. Caputo, S. Ashimova, A. Fabozzi, G. D’Errico, R. Angelico, Appl. Sci. 8 (2018) 1405. Crossref DOI: https://doi.org/10.3390/app8081405

(4). M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, C. Oliviero Rossi, Appl. Sci. 9 (2019) 742. Crossref DOI: https://doi.org/10.3390/app9040742

(5). P. Caputo, M. Porto, V. Loise, B. Teltayev, C. Oliviero Rossi, Eurasian Chem.-Technol. J. 21 (2019) 235–239. Crossref DOI: https://doi.org/10.18321/ectj864

(6). M. Porto, P. Caputo, V. Loise, G. De Filpo, C. Oliviero Rossi, P. Calandra, Appl. Sci. 9 (2019) 5564. Crossref DOI: https://doi.org/10.3390/app9245564

(7). H. Jaroszek, CHEMIK 66 12 (2012) 1340-1345. DOI: https://doi.org/10.2524/jtappij.66.1340

(8). C. Qian, W. Fan, F. Ren, X. Lv, B. Xing, Constr. Build. Mat. 227 10 (2019) 117094. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2019.117094

(9). S.-peng Wu, L. Pang, L.-tong Mo, Y.-chun Chen, G.-jun Zhu, Constr. Build. Mat. 23 (2009) 1005– 1010. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2008.05.004

(10). H. Zhang, J. Yu, S. Wu, Constr. Build. Mat. 27 (2012) 553–559. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.008

(11). F.J. Navarro, P. Partal, F. Martinez-Boza, C. Gallegos, Energ. Fuel. 19 (2005) 1984–1990. Crossref DOI: https://doi.org/10.1021/ef049699a

(12). J.S. Chen, C.C. Huang, P.Y. Chu, K.Y. Lin, J. Mater. Sci. 42 (2007) 9867–9876. Crossref DOI: https://doi.org/10.1007/s10853-007-1713-8

(13). J.-F. Su, J. Qiu, E. Schlangen, Y.-Y. Wang, Constr. Build. Mat. 74 (2015) 83–92. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.018

(14). P. Caputo, G.A. Ranieri, N. Godbert, I. Aiello, A. Tagarelli, C. Oliviero Rossi, Mediterranean Journal of Chemistry 7 (2018) 259–266. Crossref DOI: https://doi.org/10.13171/mjc74181107-rossi

(15). M. Arabani, H. Roshani, G.H. Hamedi, J. Mater. Civil Eng. 24 (2012) 889–897. Crossref DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000455

(16). G.C. Hurley, B.D Prowell, Evaluation of Sasobit® for Use in Warm Mix Asphalt. National Center for Asphalt Technology, NCAT Report 05-06, 2005, 27 p.

(17). A. Stimilli, A. Virgili, F. Canestrari, J. Clean. Prod. 156 (2017) 911–922. Crossref DOI: https://doi.org/10.1016/j.jclepro.2017.03.235

(18). S.D. Capitão, L.G. Picado-Santos, F. Martinho, Constr. Build. Mater. 36 (2012) 1016–1024. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.038

(19). U. Bagampadde, U. Isacsson, B.M. Kiggundu, Road Mater. Pavement Design 5 (2004) 7–43. Crossref DOI: https://doi.org/10.3166/rmpd.5.7-43

(20). J.G. Speight, Asphalt Materials Science and Technology, Butterworth-Heinemann, 2015. Crossref

(21). D. Little, D.H. Allen, A. Bhasin, Modeling and Design of Flexible Pavements and Materials, Springer International Publishing, 2018. Crossref DOI: https://doi.org/10.1007/978-3-319-58443-0

(22). C. Curtis, Fuel 37 (1992) 46–54. Crossref DOI: https://doi.org/10.2307/25305520

(23). T.W. Kennedy, F.L. Roberts, K.W. Lee, Transportation Research Record 968 (1984) 45–54.

(24). C. Oliviero Rossi, P. Caputo, N. Baldino, F.R. Lupi, D. Miriello, R. Angelico, Int. J. Adhes. Adhes. 70 (2016) 297–303. Crossref DOI: https://doi.org/10.1016/j.ijadhadh.2016.07.013

(25). C. Oliviero Rossi, P. Caputo, N. Baldino, E. Ildyko Szerbc, B. Teltayev, Int. J. Adhes. Adhes. 72 (2017) 117–122. Crossref DOI: https://doi.org/10.1016/j.ijadhadh.2016.10.015

(26). H. Ollendorf, D. Schneider, Surf. Coat. Technol. 113 (1999) 86–102. Crossref DOI: https://doi.org/10.1016/S0257-8972(98)00827-5

(27). J. Grenfell, N. Ahmad, Y. Liu, A. Apeagyei, D. Large, G. Airey, Road Mater. Pavement Design 15 (2014) 131–152. Crossref DOI: https://doi.org/10.1080/14680629.2013.863162

(28). S. Cui, B.R.K. Blackman, A.J. Kinloch, A.C. Taylor, Int. J. Adhes. Adhes. 54 (2014) 100–111. Crossref DOI: https://doi.org/10.1016/j.ijadhadh.2014.05.009

(29). C. Oliviero Rossi, B. Teltayev, R. Angelico, Appl. Sci. 7 (2017) 524. Crossref DOI: https://doi.org/10.3390/app7050524

(30). Z. Liu, X. Huang, A. Sha, H. Wang, J. Chen, C. Li, Materials 12 (2019) 605. Crossref DOI: https://doi.org/10.3390/ma12040605

(31). C. Oliviero Rossi, P. Caputo, G. De Luca, L. Maiuolo, S. Eskandarsefat, C. Sangiorgi, Appl. Sci. 8 (2018) 229. Crossref DOI: https://doi.org/10.3390/app8020229

(32). D.D. Eberl, V.A. Drits, J. Srodon, Am. J. Sci. 298 (1998) 499–533. Crossref DOI: https://doi.org/10.2475/ajs.298.6.499

(33). J. Drelich, J.D. Miller, R.J. Good, J. Colloid Interf. Sci. 179 (1996) 37–50. Crossref DOI: https://doi.org/10.1006/jcis.1996.0186

(34). K. Seo, M. Kim, J.K. Ahn, D.H. Kim, Korean J. Chem. Eng. 32 (2015) 2394–2399. Crossref DOI: https://doi.org/10.1007/s11814-015-0034-x

(35). J. Drelich, J. Adhesion 63 (1997) 31–51. Crossref DOI: https://doi.org/10.1080/00218469708015212

(36). P. Caputo, D. Miriello, A. Bloise, N. Baldino, O. Mileti and G.A. Ranieri, Int. J. Adhes. Adhes. 102 (2020) 102680. Crossref DOI: https://doi.org/10.1016/j.ijadhadh.2020.102680

(37). M. Nazirizad, A. Kavussi, A. Abdi, Constr. Build. Mater. 84 (2015) 348–353. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.024

(38). R.A. Young, in: R.A. Young (Ed.), The Rietveld Method, Oxford University Press, 1993, pp. 1–38. DOI: https://doi.org/10.1093/oso/9780198555773.003.0001

(39). A.F. Gualtieri, G.D. Gatta, R. Arletti, G. Artioli, P. Ballirano, G. Cruciani, A. Guagliardi, D. Malferrari, N. Masciocchi, P. Scardi, Periodico di Mineralogia 88 (2019) 147–151.

(40). P. Caputo, V. Loise, A. Crispini, C. Sangiorgi, F. Scarpelli, C. Oliviero Rossi, Colloid. Surface. A 571 (2019) 50–54. Crossref DOI: https://doi.org/10.1016/j.colsurfa.2019.03.059

(41). C. Klein and C.S. Hurlbut, J.D. Dana. The 22nd edition of the manual of mineral science: (after James D. Dana), New York : J. Wiley, 2002.

(42). K.V. Cashman, B.D. Marsh, Contr. Mineral. Petrol. 99 (1988) 292–305. Crossref DOI: https://doi.org/10.1007/BF00375363

(43). W.A. Deer, R.A. Howie, J. Zussman, J.F.W. Bowles, D.J. Vaughan, Rock-Forming Minerals, Volume 5A: Non-Silicates: Oxides, Hydroxides and Sulphides, 2011.

Downloads

Published

30-09-2020

How to Cite

Caputo, P., Ranieri, G. A., Miriello, D., Bloise, A., Abe, A. A., Teltayev, B., & Rossi, C. O. (2020). Mathematical Model to Predict the Affinity Between Aggregate/Bitumen. Eurasian Chemico-Technological Journal, 22(3), 197–203. https://doi.org/10.18321/ectj979

Issue

Section

Articles