Acid Modification of Diatomite-Based Sorbents

  • A. Nurgain Institute of Combustion Problems, 172 Bogenbay Batyr str., 050012, Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 Al-Farabi ave., 050038, Almaty, Kazakhstan
  • M. Nazhipkyzy Institute of Combustion Problems, 172 Bogenbay Batyr str., 050012, Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 Al-Farabi ave., 050038, Almaty, Kazakhstan
  • A. A. Zhaparova Institute of Combustion Problems, 172 Bogenbay Batyr str., 050012, Almaty, Kazakhstan
  • A. T. Issanbekova al-Farabi Kazakh National University, 71 Al-Farabi ave., 050038, Almaty, Kazakhstan
  • M. Alfe Istituto di Ricerche sulla Combustione-CNR, Napoli, Italy
  • A. S. Musina Kazakh State Women Teacher Training University, Almaty
Keywords: diatomite, sorbent, acid pre-treatment, Pb sorption

Abstract

In this work, the effect of acid pre-treatment (hydrochloric acid, HCl) and calcination of diatomite, a silicon dioxide-material from natural sources, was studied with the aim to obtain diatomite-based sorbents with specific physicochemical properties. For this, acid pre-treatments with HCl at different calcination conditions, namely HCl concentration (0.5, 1 M) and calcination temperatures (from 600 to 900 °C) were studied. Morphological features different from those of natural diatomite were obtained. It has been found that treatment of diatomite with 0.5 M HCl at 800 °C showed a specific pore volume of 0.008 cm3/g, and a specific surface area of 19.26 m2/g, while the treatment of diatomite with 1.0 M HCl showed a specific pore volume of 0.011cm3/g, and a specific surface area of 25.57 m2/g. The performance of the acid pretreatment of diatomite for adsorption of Pb ions from water was also studied.

References

(1). O.S. Bello, K.A. Adegoke, R.O. Oyewole. Sep. Sci. Technol. 49 (2014) 1787–1806. Crossref

(2). E.E. ElSayed, Water Science 32 (2017) 32–43. Crossref

(3). E.A. Deliyanni, G.Z. Kyzas, K. S. Triantafyllidis, K.A. Matis. Open Chem. 13 (2015) 699–708. Crossref

(4). H.E.G.M.M. Bakr, Asian Journal of Materials Science 2 (2010) 121–136. Crossref

(5). V.I. Golik, Mining Science and Technology [Gornye nauki i tekhnologii] 4 (2016) 3–9 (in Russ.). Crossref

(6). J. John, F. Šebesta, A. Motl. Application of New Inorganic-Organic Composite Absorbers with Polyacrylonitrile Binding Matrix for Separation of Radionuclides from Liquid Radioactive Wastes. In: Choppin G.R., Khankhasayev M.K. (eds) Chemical Separation Technologies and Related Methods of Nuclear Waste Management. NATO Science Series 53 (1999). Springer, Dordrecht. Crossref

(7). L. Bandura, A. Woszuk, D. Kołodyn´ska, W. Franus, Minerals 7 (2017) 37. Crossref

(8). V.S. Komarov. Adsorbents and their properties, Science and technology [Nauka i technika]. – Minsk, 1977, 248 p. (in Russ.).

(9). Zh. Alsar, B. Duskinova, Z. Insepov, Eurasian Chem.-Technol. J. 22 (2020) 89–97. Crossref

(10). R. Mudzielwana, M.W. Gitari, S.A. Akinyemi, T.A.M. Msagati, S. Afr. J. Chem. 71 (2018) 15– 23. Crossref

(11). Y. Zhao, G. Tian, X. Duan, X. Liang, J. Meng, J. Liang, Ind. Eng. Chem. Res. 58 (2019) 11638−11652. Crossref

(12). T.N. De Castro Dantas, A. Dantas Neto, M.C. P. De A. Moura, Water Res. 35 (2001) 2219–2224. Crossref

(13). M. A.Al-Ghouti, Y.S. Al-Degs, Chem. Eng. J. 173 (2011) 115–128. Crossref

(14). T. Akafu, A. Chimdi, K. Gomoro, J. Anal. Methods Chem. 2019, Article ID 4831926. Crossref

(15). K.B. Korzhynbayeva, S.M. Tazhibayeva, K.B. Musabekov, I. Dekany, M.M. Burkitbaev, A.A. Zhubanova, A.B. Orazymbetova. Eurasian Chem.-Technol. J. 15 (2013) 233-239. Crossref

Published
2020-09-30
How to Cite
[1]
A. Nurgain, M. Nazhipkyzy, A. Zhaparova, A. Issanbekova, M. Alfe, and A. Musina, “Acid Modification of Diatomite-Based Sorbents”, Eurasian Chem.-Technol. J., vol. 22, no. 3, pp. 157-164, Sep. 2020.
Section
Articles