Carbon Nanotubes Synthesized by CCVD Method using Diatomite and Shungite Minerals

  • M. Nazhipkyzy Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • P.J.F. Harris University of Reading, Whiteknights, Reading RG6 6AF, UK
  • A. Nurgain Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • R.R. Nemkayeva National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty, Kazakhstan
Keywords: catalytic vapour deposition, diatomite, shungite, carbon nanotubes

Abstract

In this work, carbon nanotubes were prepared using catalysts consisting of nickel particles supported on the naturally occurring minerals diatomite and shungite. The carbon source for the chemical catalytic vapour deposition (CCVD) synthesis was a propane-butane gas mixture. The synthesized multiwall carbon nanotubes (MWCNT) were characterized using Raman spectroscopy, transmission and scanning electron microscopy, and the effect of temperature on their structure was investigated. The carbon content was determined by thermogravimetric analysis. In Raman spectra of CNTs the intensity ratio I(G)/I(D) for 650 °C is higher than that for 700 °C and then it begins to increase with increasing temperature. The results show that the diameter of CNTs which were synthesized on the surface of diatomite/shungite samples were in the range of 33–100.3 nm. The development of new methods for creating catalytic systems that allow controlling the structure of carbon particles is an important task leading to the improvement of existing approaches to the synthesis of CNTs with certain functional properties.

References

(1). S. Iijima, Nature 354 (1991) 56‒58. Crossref

(2). T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694–10697. Crossref

(3). M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Chem. Solids 54 (1993) 1841–1848. Crossref

(4). N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, Springer Science & Business Media, 2011.

(5). X.D. Yang, J. Alloy. Compd. 563 (2013) 216– 220. Crossref

(6). M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones, M.S. Dresselhaus, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362 (2004) 2223–2238. Crossref

(7). N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta, M. Endo, Chem. Soc. Rev. 38 (2009) 1897–1903. Crossref

(8). Y. Shimizu, S. Miki, T. Soga, I. Itoh, H.Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Scr. Mater. 58 (2008) 267–270. Crossref

(9). K. Fujisawa, H.J. Kim, S.H. Go, H. Muramatsu, T. Hayashi, M. Endo, T.C. Hirschmann, M.S. Dresselhaus, Y.A. Kim, P.T. Arauj, Appl. Sci. 6 (2016) 109. Crossref

(10). M. Fujishige, W. Wongwiriyapan, H. Muramatsu, K. Takeuchi, S. Arai, J. Phys. Chem. Solids 113 (2018) 229–234. Crossref

(11). O.K. Park, H. Choi, H. Jeong, Y. Jung, J. Yu, J.K. Lee, J.Y. Hwang, S.M. Kim; Y. Jeong, C.R. Park, M. Endo, B.C. Ku, Carbon 118 (2017) 413–421. Crossref

(12). N. Kobayashi, Y. Inden, M. Endo, J. Power Sources 326 (2016) 235–241. Crossref

(13). J.C. García-Gallegos, I. Martín-Gullón, J.A. Conesa, Y.I. Vega-Cantú, F.J. Rodríguez- Macías, Nanotechnology 27 (2016) 015501. Crossref

(14). R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref

(15). L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190‒3196. Crossref

(16). M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48 (2010) 1592‒1597. Crossref

(17). R Saito, A Grüneis, Ge.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, New J. Phys. 5 (2003) 157. Crossref

(18). H. Nii, Y. Sumiyama, H. Nakagawa, A. Kunishige, Appl. Phys. Express 1 (2008) 064005. Crossref

(19). Y.-C. Hsieh, Y.-C. Chou, C.-P. Lin, T.-F. Hsieh, C.-M. Shu, Aerosol Air Qual. Res. 10 (2010). Crossref

Published
2022-03-31
How to Cite
[1]
M. Nazhipkyzy, P. Harris, A. Nurgain, and R. Nemkayeva, “Carbon Nanotubes Synthesized by CCVD Method using Diatomite and Shungite Minerals”, Eurasian Chem.-Technol. J., vol. 24, no. 1, pp. 3-11, Mar. 2022.
Section
Articles