Carbon Nanotubes Synthesized by CCVD Method using Diatomite and Shungite Minerals

Authors

  • M. Nazhipkyzy Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • P.J.F. Harris University of Reading, Whiteknights, Reading RG6 6AF, UK
  • A. Nurgain Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • R.R. Nemkayeva National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1143

Keywords:

catalytic vapour deposition, diatomite, shungite, carbon nanotubes

Abstract

In this work, carbon nanotubes were prepared using catalysts consisting of nickel particles supported on the naturally occurring minerals diatomite and shungite. The carbon source for the chemical catalytic vapour deposition (CCVD) synthesis was a propane-butane gas mixture. The synthesized multiwall carbon nanotubes (MWCNT) were characterized using Raman spectroscopy, transmission and scanning electron microscopy, and the effect of temperature on their structure was investigated. The carbon content was determined by thermogravimetric analysis. In Raman spectra of CNTs the intensity ratio I(G)/I(D) for 650 °C is higher than that for 700 °C and then it begins to increase with increasing temperature. The results show that the diameter of CNTs which were synthesized on the surface of diatomite/shungite samples were in the range of 33–100.3 nm. The development of new methods for creating catalytic systems that allow controlling the structure of carbon particles is an important task leading to the improvement of existing approaches to the synthesis of CNTs with certain functional properties.

References

(1). S. Iijima, Nature 354 (1991) 56‒58. Crossref DOI: https://doi.org/10.1038/354056a0

(2). T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694–10697. Crossref DOI: https://doi.org/10.1021/j100027a002

(3). M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Chem. Solids 54 (1993) 1841–1848. Crossref DOI: https://doi.org/10.1016/0022-3697(93)90297-5

(4). N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, Springer Science & Business Media, 2011. DOI: https://doi.org/10.1007/978-3-642-14673-2

(5). X.D. Yang, J. Alloy. Compd. 563 (2013) 216– 220. Crossref DOI: https://doi.org/10.1016/j.jallcom.2013.02.066

(6). M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones, M.S. Dresselhaus, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362 (2004) 2223–2238. Crossref DOI: https://doi.org/10.1098/rsta.2004.1437

(7). N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta, M. Endo, Chem. Soc. Rev. 38 (2009) 1897–1903. Crossref DOI: https://doi.org/10.1039/b804822n

(8). Y. Shimizu, S. Miki, T. Soga, I. Itoh, H.Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Scr. Mater. 58 (2008) 267–270. Crossref DOI: https://doi.org/10.1016/j.scriptamat.2007.10.014

(9). K. Fujisawa, H.J. Kim, S.H. Go, H. Muramatsu, T. Hayashi, M. Endo, T.C. Hirschmann, M.S. Dresselhaus, Y.A. Kim, P.T. Arauj, Appl. Sci. 6 (2016) 109. Crossref DOI: https://doi.org/10.3390/app6040109

(10). M. Fujishige, W. Wongwiriyapan, H. Muramatsu, K. Takeuchi, S. Arai, J. Phys. Chem. Solids 113 (2018) 229–234. Crossref DOI: https://doi.org/10.1016/j.jpcs.2017.10.010

(11). O.K. Park, H. Choi, H. Jeong, Y. Jung, J. Yu, J.K. Lee, J.Y. Hwang, S.M. Kim; Y. Jeong, C.R. Park, M. Endo, B.C. Ku, Carbon 118 (2017) 413–421. Crossref DOI: https://doi.org/10.1016/j.carbon.2017.03.079

(12). N. Kobayashi, Y. Inden, M. Endo, J. Power Sources 326 (2016) 235–241. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2016.06.117

(13). J.C. García-Gallegos, I. Martín-Gullón, J.A. Conesa, Y.I. Vega-Cantú, F.J. Rodríguez- Macías, Nanotechnology 27 (2016) 015501. Crossref DOI: https://doi.org/10.1088/0957-4484/27/1/015501

(14). R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref DOI: https://doi.org/10.1063/1.2712152

(15). L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190‒3196. Crossref DOI: https://doi.org/10.1021/nl201432g

(16). M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48 (2010) 1592‒1597. Crossref DOI: https://doi.org/10.1016/j.carbon.2009.12.057

(17). R Saito, A Grüneis, Ge.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, New J. Phys. 5 (2003) 157. Crossref DOI: https://doi.org/10.1088/1367-2630/5/1/157

(18). H. Nii, Y. Sumiyama, H. Nakagawa, A. Kunishige, Appl. Phys. Express 1 (2008) 064005. Crossref DOI: https://doi.org/10.1143/APEX.1.064005

(19). Y.-C. Hsieh, Y.-C. Chou, C.-P. Lin, T.-F. Hsieh, C.-M. Shu, Aerosol Air Qual. Res. 10 (2010). Crossref DOI: https://doi.org/10.4209/aaqr.2009.08.0053

Downloads

Published

31-03-2022

How to Cite

Nazhipkyzy, M., Harris, P., Nurgain, A., & Nemkayeva, R. (2022). Carbon Nanotubes Synthesized by CCVD Method using Diatomite and Shungite Minerals. Eurasian Chemico-Technological Journal, 24(1), 3–11. https://doi.org/10.18321/ectj1143

Issue

Section

Article

Most read articles by the same author(s)