Carbon Nanotubes Synthesized by CCVD Method using Diatomite and Shungite Minerals
DOI:
https://doi.org/10.18321/ectj1143Keywords:
catalytic vapour deposition, diatomite, shungite, carbon nanotubesAbstract
In this work, carbon nanotubes were prepared using catalysts consisting of nickel particles supported on the naturally occurring minerals diatomite and shungite. The carbon source for the chemical catalytic vapour deposition (CCVD) synthesis was a propane-butane gas mixture. The synthesized multiwall carbon nanotubes (MWCNT) were characterized using Raman spectroscopy, transmission and scanning electron microscopy, and the effect of temperature on their structure was investigated. The carbon content was determined by thermogravimetric analysis. In Raman spectra of CNTs the intensity ratio I(G)/I(D) for 650 °C is higher than that for 700 °C and then it begins to increase with increasing temperature. The results show that the diameter of CNTs which were synthesized on the surface of diatomite/shungite samples were in the range of 33–100.3 nm. The development of new methods for creating catalytic systems that allow controlling the structure of carbon particles is an important task leading to the improvement of existing approaches to the synthesis of CNTs with certain functional properties.
References
(1). S. Iijima, Nature 354 (1991) 56‒58. Crossref DOI: https://doi.org/10.1038/354056a0
(2). T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694–10697. Crossref DOI: https://doi.org/10.1021/j100027a002
(3). M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Chem. Solids 54 (1993) 1841–1848. Crossref DOI: https://doi.org/10.1016/0022-3697(93)90297-5
(4). N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, Springer Science & Business Media, 2011. DOI: https://doi.org/10.1007/978-3-642-14673-2
(5). X.D. Yang, J. Alloy. Compd. 563 (2013) 216– 220. Crossref DOI: https://doi.org/10.1016/j.jallcom.2013.02.066
(6). M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones, M.S. Dresselhaus, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362 (2004) 2223–2238. Crossref DOI: https://doi.org/10.1098/rsta.2004.1437
(7). N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta, M. Endo, Chem. Soc. Rev. 38 (2009) 1897–1903. Crossref DOI: https://doi.org/10.1039/b804822n
(8). Y. Shimizu, S. Miki, T. Soga, I. Itoh, H.Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Scr. Mater. 58 (2008) 267–270. Crossref DOI: https://doi.org/10.1016/j.scriptamat.2007.10.014
(9). K. Fujisawa, H.J. Kim, S.H. Go, H. Muramatsu, T. Hayashi, M. Endo, T.C. Hirschmann, M.S. Dresselhaus, Y.A. Kim, P.T. Arauj, Appl. Sci. 6 (2016) 109. Crossref DOI: https://doi.org/10.3390/app6040109
(10). M. Fujishige, W. Wongwiriyapan, H. Muramatsu, K. Takeuchi, S. Arai, J. Phys. Chem. Solids 113 (2018) 229–234. Crossref DOI: https://doi.org/10.1016/j.jpcs.2017.10.010
(11). O.K. Park, H. Choi, H. Jeong, Y. Jung, J. Yu, J.K. Lee, J.Y. Hwang, S.M. Kim; Y. Jeong, C.R. Park, M. Endo, B.C. Ku, Carbon 118 (2017) 413–421. Crossref DOI: https://doi.org/10.1016/j.carbon.2017.03.079
(12). N. Kobayashi, Y. Inden, M. Endo, J. Power Sources 326 (2016) 235–241. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2016.06.117
(13). J.C. García-Gallegos, I. Martín-Gullón, J.A. Conesa, Y.I. Vega-Cantú, F.J. Rodríguez- Macías, Nanotechnology 27 (2016) 015501. Crossref DOI: https://doi.org/10.1088/0957-4484/27/1/015501
(14). R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref DOI: https://doi.org/10.1063/1.2712152
(15). L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190‒3196. Crossref DOI: https://doi.org/10.1021/nl201432g
(16). M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48 (2010) 1592‒1597. Crossref DOI: https://doi.org/10.1016/j.carbon.2009.12.057
(17). R Saito, A Grüneis, Ge.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, New J. Phys. 5 (2003) 157. Crossref DOI: https://doi.org/10.1088/1367-2630/5/1/157
(18). H. Nii, Y. Sumiyama, H. Nakagawa, A. Kunishige, Appl. Phys. Express 1 (2008) 064005. Crossref DOI: https://doi.org/10.1143/APEX.1.064005
(19). Y.-C. Hsieh, Y.-C. Chou, C.-P. Lin, T.-F. Hsieh, C.-M. Shu, Aerosol Air Qual. Res. 10 (2010). Crossref DOI: https://doi.org/10.4209/aaqr.2009.08.0053