NMR-Spectrometric Determination of the Fragmented Oil Composition from the Karazhanbas and Zhangurshi Oil Deposits
DOI:
https://doi.org/10.18321/ectj726Abstract
The methods of 1H, 13C NMR-spectroscopy were used to study the fragmentary compositions of oil from the Karazhanbas, Zhangurshi deposits (Kazakhstan) and heavy oil residues obtained before and after the electrohydraulic effect of water hammer after topping a light fraction of oil products. Their fragmentary composition were determined by the value of integrated intensities of 1H, 13C NMR signals of the oil under study. The obtained results have shown that the composition of oil samples understudy includes terminal CH3-groups of long alkyl chains having a value of 0.87 ppm. The presence of long alkyl chains of oil components imparts a high viscosity and bituminous consistency to the latter. The content of aromatic protons according to the integrated intensities of 1H NMR in both oil samples does not exceed 2.08%; but there are no aromatic nuclei by the integral intensities of carbon atoms at all. The low content of protons of Hα-type in hydrocarbon crude (5.2–5.3%) indicates a low content of aromatic and carbonyl carbons as well as heteroatoms in the studied samples. The content of the greater proportion of protons of the Hγ-type in Karazhanbas oil (33.0%) compared to the Zhangurshi oil (23.8%) indicates a greater length of aliphatic hydrocarbons of the latter and its increased viscosity.
References
(1). G.A. Kalabin, L.V. Kanitskaya, D.F. Kushnarev, Quantitative NMR Spectroscopy of Natural Organic Feedstock and Its Processing Products. Chemistry, Moscow, Russia, 2000, p. 408 (in Russian).
(2). V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina. Magnetic Resonance and Its Applications. Springer International Publishing, Heidelberg, Germany, 2014. P. 782.
(3). I.Z. Rakhmatullin, S.V. Efimov, B.Ya. Margulis, V.V. Klochkov, J. Petrol. Sci. Eng. 156 (2017) 12–18. Crossref
(4). P. Zhang, S. Lu, J. Li, C. Chen, H. Xue, J. Zhang, Mar. Petrol. Geol. 89 (2018) 775–785. Crossref
(5). W. Yan, J. Sun, Z. Cheng, J. Li, Y. Sun, W. Shao, Y. Shao, Fuel 206 (2017) 89–98. Crossref
(6). V.A. Dorogochinskaya, É.D. Shul’zhenko, V.P. Varshaver, R.K. Khabibulina, L.R. Kochuleva, Chem. Technol. Fuels Oils 25 (1989) 46–47 Crossref
(7). D.U. Bodykov, M.S. Abdikarimov, Z.A. Mansurov, Gorenie i Plazmohimija [Combustion and Plasmochemistry] 13 (2015) 303–311 (in Russian).
(8). M.S. Abdikarimov, M.A. Seitzhanova, M. Nazhipkyzy, Z.A. Mansurov, A.O. Kabdoldina, Zh.R. Ualiyev, J. Eng. Phys. Thermophy. 90 (2017) 1096–1101. Crossref
(9). J.C. Poveda, D.R. Molina, J. Petrol. Sci. Eng. 84–85 (2012) 1–7. Crossref
(10). В.R. Sadykov, V.P. Starikov, R.Kh. Sadykov, G.A. Kalabin, Petrol. Chem. 52 (2012) 22–27. Crossref
(11). G.A. Kalabin, B.R. Sadykov, D.F. Kushnarev, Russ. Chem. B. 63 (2014) 1774–1779. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.