Raman characteristics of multiwalled carbon nanotubes based on diatomite

Authors

  • M. Nazhipkyzy
  • A. Nurgain Institute of Combustion Problems, Bogenbai Batyr str., 172, 050012, Almaty, the Republic of Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050038, Almaty, the Republic of Kazakhstan
  • A.A. Zhaparova Institute of Combustion Problems, Bogenbai Batyr str., 172, 050012, Almaty, the Republic of Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050038, Almaty, the Republic of Kazakhstan
  • A.R. Seitkazinova Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050038, Almaty, the Republic of Kazakhstan
  • N.G. Prikhodko Institute of Combustion Problems, Bogenbai Batyr str., 172, 050012, Almaty, the Republic of Kazakhstan; Almaty University of Power Engineering and Telecommunications, Baitursunov str. 126, Almaty, Kazakhstan
  • R.R. Nemkayeva Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050038, Almaty, the Republic of Kazakhstan

DOI:

https://doi.org/10.18321/ectj765

Keywords:

diatomite, multiwall carbon nanotubes, chemical catalytic vapor deposition, Raman spectra

Abstract

In this paper, the diatomite mineral from Mugalzhar field, Aktobe region, has been used as a matrix of catalyst particles to synthesize multiwall carbon nanotubes (MWCNTs) by Catalytic Chemical Vapor Deposition method (CCVD). As a source of carbon was used a propane-butane gas mixture, as a catalyst – Ni particles deposited from Ni(NO3)2 solution during heat treatment process at 400–500 °C. The CCVD method was conducted at a different temperature: 650 °C, 700 °C, 750 °C, 800 °C. Obtained MWCNTs were studied by Raman spectroscopy. The characteristics such as crystallinity, defectiveness, diameter of MWCNTs synthesized at different experimental conditions were evaluated from the positions and intensity ratios of Raman peaks of the samples. The results of investigations of the properties of the obtained carbon nanotubes show the dependence of MWCNTs characteristics on CCVD method temperature. The observation of changes in all the three peaks – D, G and 2D, of obtained materials exhibit, that MWCNTs synthesized at 800 °C possess high crystallinity, low defectiveness and larger diameters as compared with carbon nanotubes grown at 650 °C, 700 °C, 750 °C.

References

(1). E.V. Lobiak, E.V. Shlyakhova, L.G. Bulusheva, P.E. Plyusni, Yu.V. Shubin, A.V. Okotrub, J. Alloy. Compd. 621 (2015) 351–356. Crossref DOI: https://doi.org/10.1016/j.jallcom.2014.09.220

(2). A.V. Melezhyk, A.V. Rukhov, E.N. Tugolukov, A.G. Tkachev, Nanosystems: physics, chemistry, mathematics 4 (2013) 247–259.

(3). O.V. Krylov, Geterogenniy kataliz, – M.: Akademkniga, 2004. 679 p. (in Russian).

(4). V A Semikolenov, Russ. Chem. Rev. 61 (1992) 168–174. Crossref DOI: https://doi.org/10.1070/RC1992v061n02ABEH000938

(5). M. Nazhipkyzy, T. Temirgaliyeva, A.A. Zhaparova, A. Nurgain, B.T. Lesbayev, Z.A. Mansurov, N.G. Prikhodko, Materials Science Forum 886 (2017) 32–36. Crossref DOI: https://doi.org/10.4028/www.scientific.net/MSF.886.32

(6). C. Li, K. Yao, D. Ruan, D. Wu. Sci. China Ser. E-Technol. Sci. 46 (2003) 303–308. Crossref DOI: https://doi.org/10.1360/03ye9033

(7). El-Shazly M. Duraia, M. Burkitbaev, H. Mohamedbakr, Z. Mansurov, S. Tokmolden, Gary W. Beall, Vacuum 84 (2009) 464–468. Crossref DOI: https://doi.org/10.1016/j.vacuum.2009.09.012

(8). Hassan Alijani, Mostafa Hossein Beyki, Zahra Shariatinia, Mehrnoosh Bayat, Farzaneh Shemirani, Chem. Eng. J. 253 (2014) 456–463. Crossref DOI: https://doi.org/10.1016/j.cej.2014.05.021

(9). A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5 (2003) 139. Crossref DOI: https://doi.org/10.1088/1367-2630/5/1/139

(10). T.S. Temirgaliyeva, M. Nazhipkyzy, A. Nurgain, Z.A. Mansurov, Zh.B. Bakenov. J. Eng. Phys. Thermophy. 91 (2018) 1295–1301. Crossref DOI: https://doi.org/10.1007/s10891-018-1861-5

(11). Roberta A. DiLeo, Brian J. Landi, and Ryne P. Raffaelle. J. Appl. Phys. 101 (2007) 064307. Crossref DOI: https://doi.org/10.1063/1.2712152

(12). L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190–3196. Crossref DOI: https://doi.org/10.1021/nl201432g

(13). N.G. Prikhod’ko, Z.A. Mansurov, M. Auelkhankyzy, B.T. Lesbayev, M. Nazhipkyzy, G.T. Smagulova, Russ. J. Phys. Chem. B 9 (2015) 743–747. Crossref DOI: https://doi.org/10.1134/S1990793115050115

(14). M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, Rodrigo B. Capaz, C.A. Achete, A. Jorio, Carbon 48 (2010) 1592– 1597. Crossref DOI: https://doi.org/10.1016/j.carbon.2009.12.057

(15). H. Nii, Y. Sumiyama, H. Nakagawa and A. Kunishige, Appl. Phys. Express 1 (2008) 064005. Crossref DOI: https://doi.org/10.1143/APEX.1.064005

(16). E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava- Airoldi, Carbon 45 (2007) 913–921. Crossref DOI: https://doi.org/10.1016/j.carbon.2007.01.003

(17). Lei Feng, Ke-Zhi Li, Jin-Hua Lu, Le-Hua Qi. J. Mater. Sci. Technol. 33 (2017) 65–70. Crossref DOI: https://doi.org/10.1016/j.jmst.2016.08.015

(18). V.L. Kuznetsov, S.N. Bokova-Sirosh, S.I. Moseenkov, A.V. Ishchenko, D.V. Krasnikov, M.A. Kazakova, A.I. Romanenko, E.N. Tkachev, E. D. Obraztsova, Phys. Status Solidi B 251 (2014) 2444–2450. Crossref DOI: https://doi.org/10.1002/pssb.201451195

Downloads

Published

21-12-2018

How to Cite

Nazhipkyzy, M., Nurgain, A., Zhaparova, A., Seitkazinova, A., Prikhodko, N., & Nemkayeva, R. (2018). Raman characteristics of multiwalled carbon nanotubes based on diatomite. Eurasian Chemico-Technological Journal, 20(4), 319–323. https://doi.org/10.18321/ectj765

Issue

Section

Articles

Most read articles by the same author(s)