Graphene-Like Layers from Unconventional Carbon Sources: New Perspectives on Hybrid Materials and π-system Synergisms

Authors

  • R. Di Capua Department of Physics - University of Naples Federico II, and CNR-SPIN, I-80126 Naples, Italy
  • V. Gargiulo Istituto di Ricerche sulla Combustione (IRC) - CNR, I-80125 Naples, Italy
  • M. Alfe Istituto di Ricerche sulla Combustione (IRC) - CNR, I-80125 Naples, Italy

DOI:

https://doi.org/10.18321/ectj480

Abstract

We developed a new approach for producing graphene-like (GL) materials through a two-steps oxidation/reduction method starting from a nanostructured (high surface) carbon black, a versatile carbonaceous material prone to be structurally and chemically modified in quite mild wet conditions. Atomic Force Microscopy and zetapotential measurements allowed to model the assembling mechanisms and the role of hydrophobic interactions, demonstrating the possibility to easily tune the surface morphology. GL materials have been then employed in a large variety of hybrid materials for innovative applications, and characterized by chemical, electrical, structural and spectroscopic techniques. With Metal-Organic Frameworks, GL produced conducting composites with electrical conductivity tunable by changing the concentration of the parent materials; Eumelanin/GL and TiO2-nanoparticles/GL were also studied for photocatalysis and biosensors applications.

References

[1]. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666‒669. <a href="https://doi.org/10.1126/science.1102896">Crossref</a>

[2]. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132‒145. <a href="https://doi.org/10.1021/cr900070d">Crossref</a>

[3]. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902‒907. <a href="https://doi.org/10.1021/nl0731872">Crossref</a>

[4]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146 (2008) 351‒355. <a href="https://doi.org/10.1016/j.ssc.2008.02.024">Crossref</a>

[5]. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8 (2008) 323‒327. <a href="https://doi.org/10.1021/nl072838r">Crossref</a>

[6]. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firvos, Nature 438 (2005) 197‒200. <a href="https://doi.org/10.1038/nature04233">Crossref</a>

[7]. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201‒204. <a href="https://doi.org/10.1038/nature04235">Crossref</a>

[8]. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385‒388. <a href="https://doi.org/10.1126/science.1157996">Crossref</a>

[9]. H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Sol. Energy Mater. Sol. Cells 95 (2010) 323‒325. <a href="https://doi.org/10.1016/j.solmat.2010.04.044">Crossref</a>

[10]. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim,K.S. Novoselov, Nano Lett. 8 (2008) 1704‒1708. <a href="https://doi.org/10.1021/nl080649i">Crossref</a>

[11]. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 2008, 8, 3498‒3502. <a href="https://doi.org/10.1021/nl802558y">Crossref</a>

[12]. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315 (2007)490‒493. <a href=" https://doi.org/10.1126/science.1136836">Crossref</a>

[13]. A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183‒191. <a href=" https://doi.org/10.1038/nmat1849">Crossref</a>

[14]. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T.Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nat. Nanotechnol. 3 (2008) 327‒331. <a href=" https://doi.org/10.1038/nnano.2008.96">Crossref</a>

[15]. M. Ruan, Y. Hu, Z. Guo, R. Dong, J. Palmer, J. Hankinson, C. Berger, W.A. de Heer, MRS Bull. 37 (2012) 1138‒1147. <a href="https://doi.org/10.1557/mrs.2012.231">Crossref</a>

[16]. R. Ruoff, Nat. Nanotech. 3 (2008) 10‒11. <a href=" https://doi.org/10.1038/nnano.2007.432">Crossref</a>

[17]. O.C. Compton, S.T. Nguyen, Small 6 (2010) 711– 723. <a href="https://doi.org/10.1002/smll.200901934">Crossref</a>

[18]. J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J. Huang, ACS Nano 5 (2011) 8943–8949. <a href=" https://doi.org/10.1021/nn203115u">Crossref</a>

[19]. R. Vidic, M. Suidan, G. Sorial, R. Brenner, Water Environ. Res. 65 (1993) 156–161. <a href="https://doi.org/10.2175/WER.65.2.8">Crossref</a>

[20]. S. Wu, P. Pendleton, J. Colloid Interface Sci. 243 (2001) 306‒315. <a href="https://doi.org/10.1006/jcis.2001.7905">Crossref</a>

[21]. S. Kwon, R. Vidic, E. Borguet, Carbon 40 (2002) 2351–2358. <a href="https://doi.org/10.1016/S0008-6223(02)00155-0">Crossref</a>

[22]. S. Kwon, R. Vidic, E. Borguet, Surf. Sci. 522 (2003) 17–26. <a href="https://doi.org/10.1016/S0039-6028(02)02316-6">Crossref</a>

[23]. C. Li, K. Yao, J. Liang, Carbon 41 (2003) 858–860. <a href="https://doi.org/10.1016/S0008-6223(02)00450-5">Crossref</a>

[24]. M. Toebes, F. Prinsloo, J. Bitter, A. van Dillen, K. de Jong, J. Catal. 214 (2003) 78–87.

[25]. N. Beck, S. Meech, P. Norman, L. Pears, Carbon 40 (2002) 531–540. <a href="https://doi.org/10.1016/S0008-6223(01)00144-0">Crossref</a>

[26]. Y. Li, C. Lee, B. Gullett, Fuel 82 (2003) 451–457. <a href="https://doi.org/10.1016/S0016-2361(02)00307-1">Crossref</a>

[27]. J. Liu, Z. He, S. Wang, New Carbon Mater. 2002 17 (2002) 20–24.

[28]. X. Huang, X. Qi, F. Boeyab, H. Zhang, Chem. Soc. Rev. 41 (2012) 666–686. <a href=" https://doi.org/10.1039/C1CS15078B">Crossref</a>

[29]. W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z.Y. Lu, X.J. Zhang, H. Zhang, H.H. Hng, Q. Yan, J. Mater. Chem. 21 (2011) 3422–3427. <a href=" https://doi.org/10.1039/C0JM03175E">Crossref</a>

[30]. J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Chen, H. Zhang, H.H. Hng, J. Ma, Q. Yan, Nanoscale 3 (2011) 1084–1089. <a href=" https://doi.org/10.1039/C0NR00744G">Crossref</a>

[31]. X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Nat. Commun. 2011, 2, 292_1‒6. <a href=" https://doi.org/10.1038/ncomms1291">Crossref</a>

[32]. S. Wang, B.M. Goh, K.K. Manga, Q. Bao, P. Yang, K.P. Loh, ACS Nano 4 (2010) 6180–6186. <a href=" https://doi.org/10.1021/nn101800n">Crossref</a>

[33]. T.H. Han, W.J. Lee, D.H. Lee, J.E. Kim, E.Y. Choi, S.O. Kim, Adv. Mater. 22 (2010) 2060–2064. <a href=" https://doi.org/10.1002/adma.200903221">Crossref</a>

[34]. H.F. Yang, Q.X. Zhang, C.S. Shan, F.H. Li, D.X. Han, L. Niu, Langmuir 26 (2010) 6708–6712. <a href=" https://doi.org/0.1021/la100365z">Crossref</a>

[35]. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, Angew. Chem., Int. Ed. 121 (2009) 4879–4881. <a href=" https://doi.org/10.1002/ange.200901479">Crossref</a>

[36]. H. Chang, L. Tang, Y. Wang, J. Jiang, J. Li, Anal. Chem. 82 (2010) 2341–2346. <a href=" https://doi.org/10.1021/ac9025384">Crossref</a>

[37]. Y. Wang, Z. Li, D. Hu, C.-T. Lin, J. Li, Y. Lin, J. Am. Chem. Soc. 132 (2010) 9274–9276. <a href=" https://doi.org/0.1021/ja103169v">Crossref</a>

[38]. X. Dong, B. Li, A. Wei, X. Cao, M.B. Chan-Park, H. Zhang, L.-J. Li, W. Huang, P. Chen, Carbon 49 (2011) 2944‒2949. <a href=" https://doi.org/10.1016/j.carbon.2011.03.009">Crossref</a>

[39]. V.C. Tung, L.-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang, Nano Lett. 9 (2009) 1949–1955. <a href=" https://doi.org/10.1021/nl9001525">Crossref</a>

[40]. E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277–2282. <a href=" https://doi.org/10.1021/nl800957b">Crossref</a>

[41]. D. Yu, L. Dai, J. Phys. Chem. Lett. 1 (2010) 467– 470. <a href=" https://doi.org/10.1021/jz9003137">Crossref</a>

[42]. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, Adv. Mater. 22 (2010) 3723–3728. <a href=" https://doi.org/10.1002/adma.201001029">Crossref</a>

[43]. M. Jahan, Q. Bao, J.-X. Yang, K.P. Loh, J. Am. Chem. Soc. 132 (2010) 14487–14495. <a href=" https://doi.org/10.1021/ja105089w">Crossref</a>

[44]. C. Petit, T.J. Bandosz, Adv. Funct. Mater. 20 (2010) 111–118. <a href=" https://doi.org/10.1002/adfm.200900880">Crossref</a>

[45]. C. Petit, J. Burress, T.J. Bandosz, Carbon 49 (2011) 563–572. <a href=" https://doi.org/10.1016/j.carbon.2010.09.059">Crossref</a>

[46]. J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.Y. Choi, J.M. Kim, J.B. Yoo, Adv. Mater. 21 (2009) 4383‒4387. <a href=" https://doi.org/10.1002/adma.200900726">Crossref</a>

[47]. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.H. Choi, B.H. Hong, Nature 457 (2009) 706‒710. <a href=" https://doi.org/10.1038/nature07719">Crossref</a>

[48]. D.S. Li, W. Windl, N.P. Padture, Adv. Mater. 21 (2009) 1243‒1246. <a href=" https://doi.org/10.1002/adma.200802417">Crossref</a>

[49]. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammens, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558‒1565. <a href=" https://doi.org/10.1016/j.carbon.2007.02.034">Crossref</a>

[50]. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai Nature 458 (2009) 877‒880. <a href=" https://doi.org/10.1038/nature07919">Crossref</a>

[51]. D. Luo, G. Zhang, J. Liu, X. Sun, J. Phys. Chem. C 115 (2011) 11327‒11335. <a href=" https://doi.org/10.1021/jp110001y">Crossref</a>

[52]. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson; R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110 (2006) 8535‒8539. <a href=" https://doi.org/10.1021/jp060936f">Crossref</a>

[53]. K.H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Mkhoyan, C.W. Macosko, ACS Nano 5 (2011) 1253‒1258. <a href=" https://doi.org/10.1021/nn1028967">Crossref</a>

[54]. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487‒1491. <a href=" https://doi.org/10.1021/nn800251f">Crossref</a>

[55]. K. Kinoshita, Carbon-Electrochemical and Physico-chemical Properties; Wiley: New York, 1988.

[56]. J.B. Donnet, R.C. Bansal, M.J. Wang, Carbon Black: Science and Technology, 2nd ed.; Dekker: New York, 1993.

[57]. E. Santini, F. Ravera, M. Ferrari, M. Alfè, A. Ciajolo, L. Liggieri, Colloids Surf. A 365 (2010) 189‒198. <a href=" https://doi.org/10.1016/j.colsurfa.2010.01.041">Crossref</a>

[58]. H. Shui, Fuel 84 (2005) 939‒941. <a href=" https://doi.org/10.1016/j.fuel.2004.12.001">Crossref</a>

[59]. K. Kamegawa, K. Nisiukubo, H. Yoshida, Carbon 36 (1998) 433‒441. <a href=" https://doi.org/10.1016/S0008-6223(97)00227-3">Crossref</a>

[60]. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22 (2011) 055705. <a href=" https://doi.org/10.1088/0957-4484/22/5/055705">Crossref</a>

[61]. I.K. Moon, J. Lee, H. Lee Chem. Commun. 47 (2011) 9681‒9683. <a href=" https://doi.org/10.1039/C1CC13312H">Crossref</a>

[62]. K. Kamegawa, K. Nisiukubo, M. Kodama, Y. Adachi, H. Yoshida Carbon 40 (2002) 1447‒1455. <a href=" https://doi.org/10.1016/S0008-6223(01)00310-4">Crossref</a>

[63]. M. Alfè, V. Gargiulo, R. Di Capua, F. Chiarella, J.N. Rouzaud, A. Vergara, A. Ciajolo, ACS Appl. Mater. Interfaces 4 (2012) 4491‒4498. <a href=" https://doi.org/10.1021/am301197q">Crossref</a>

[64]. Jr.V. Strelko, D.J. Malik, M. Streat Carbon 40 (2002) 95‒104. <a href=" https://doi.org/10.1016/S0008-6223(01)00082-3">Crossref</a>

[65]. H.F. Gorgulho, J.P. Mesquita, F. Goncalves, M.F.R. Pereira, J.L. Figueiredo, Carbon 46 (2008) 1544‒1555. <a href=" https://doi.org/10.1016/j.carbon.2008.06.045">Crossref</a>

[66]. M. Alfè, V. Gargiulo, R. Di Capua, Appl. Surf. Sci. 353 (2015) 628‒635. <a href=" https://doi.org/10.1016/j.apsusc.2015.06.117">Crossref</a>

[67]. D.H. Everett, Basic Principles of Colloid Science, The Royal Society of Chemistry, London, 1988.

[68]. J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martınez-Alonso, J.M.D. Tascon, Langmuir 25 (2009) 5957‒5968. <a href=" https://doi.org/10.1021/la804216z">Crossref</a>

[69]. P.G. de Gennes, Rev. Mod. Phys. 57 (1985) 827‒863. <a href=" https://doi.org/0.1103/RevModPhys.57.827">Crossref</a>

[70]. M. Alfè, V. Gargiulo, L. Lisi, R. Di Capua, Mater. Chem. Phys. 147 (2014) 744‒750. <a href=" https://doi.org/10.1016/j.matchemphys.2014.06.015">Crossref</a>

[71]. N. Stock; S. Biswas, Chem. Rev. 112 (2012) 933‒969. <a href=" https://doi.org/10.1021/cr200304e">Crossref</a>

[72]. H. Chae, D. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. Matzger, M. O'Keeffe, O.M. Yaghi, Nature 427 (2004) 523‒527. <a href=" https://doi.org/10.1038/nature02311">Crossref</a>

[73]. J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown Chem. Soc. Rev. 41 (2012) 2308‒2322. <a href=" https://doi.org/10.1039/C1CS15221A">Crossref</a>

[74]. N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 244−245 (2013) 444‒456. <a href=" https://doi.org/10.1016/j.jhazmat.2012.11.011">Crossref</a>

[75]. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long Chem. Rev. 112 (2012) 724‒781. <a href=" https://doi.org/10.1021/cr2003272">Crossref</a>

[76]. J.R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 255 (2011) 1791‒1823. <a href=" https://doi.org/10.1016/j.ccr.2011.02.012">Crossref</a>

[77]. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112 (2012) 869‒932. <a href=" https://doi.org/10.1021/cr200190s">Crossref</a>

[78]. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112 (2012) 782‒835. <a href=" https://doi.org/10.1021/cr200274s">Crossref</a>

[79]. M. Ranocchiari, J.A. van Bokhoven, Phys. Chem. Chem. Phys. 13 (2011) 6388‒6396. <a href=" https://doi.org/10.1039/C0CP02394A">Crossref</a>

[80]. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Chem. Rev. 112 (2012) 1232‒1268. <a href=" https://doi.org/10.1021/cr200256v">Crossref</a>

[81]. S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, R. Moos, Sensors (2009) 1574‒1589. <a href=" https://doi.org/10.3390/s90301574">Crossref</a>

[82]. S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R. Park, Chem. Mater. 21 (2009) 1893‒1897. <a href=" https://doi.org/10.1021/cm803502y">Crossref</a>

[83]. C. Petit, B. Mendoza, D. O'Donnell, T.J. Bandosz, Langmuir 27 (2011) 10234‒10242. <a href=" https://doi.org/10.1021/la2017424">Crossref</a>

[84]. C.H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 14 (2012) 13120‒13132. <a href=" https://doi.org/10.1039/C2CP41099K">Crossref</a>

[85]. S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148‒1150. <a href=" https://doi.org/10.1126/science.283.5405.1148">Crossref</a>

[86]. C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, Chem. Mater. 18 (2006) 1337‒1346. <a href=" https://doi.org/10.1021/cm052191g">Crossref</a>

[87]. J.J. Low, A.I. Benin, P. Jakubczak, J.F. Abrahamian, S.A. Faheem, R.R. Willis, J. Am. Chem. Soc. 131 (2009) 15834‒15842. <a href=" https://doi.org/10.1021/ja9061344">Crossref</a>

[88]. A. Santamaria, N. Yang, E. Eddings, F. Mondragon Combust. Flame 157 (2010) 33‒42. <a href=" https://doi.org/10.1016/j.combustflame.2009.09.016">Crossref</a>

[89]. Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun, J.S. Chang, Micropor. Mesopor. Mater. 119 (2009) 331‒337. <a href=" https://doi.org/10.1016/j.micromeso.2008.10.035">Crossref</a>

[90]. C. Petit, T.J. Bandosz, Adv. Funct. Mater. 21 (2011) 2108‒2117. <a href=" https://doi.org/10.1002/adfm.201002517">Crossref</a>

[91]. J.C. Huang, C.L. Wu, Adv. Polym. Technol. 19 (2000) 132−139. <a href=" https://doi.org/10.1002/(SICI)1098-2329(200022)19:2<132::AID-ADV6>3.0.CO;2-B">Crossref</a>

[92]. Y. Chekanov, R. Ohnogi, S. Asai, M. Sumita, J. Mater. Sci. 34 (1999) 5589‒5592. <a href=" https://doi.org/10.1023/A:100473721750">Crossref</a>

[93]. J.-C. Huang Adv. Polym. Technol. 21 (2002) 299‒313. <a href=" https://doi.org/10.1002/adv.10025">Crossref</a>

[94]. S. Kirkpatrick, Rev. Mod. Phys. 45 (1973) 574‒588. <a href=" https://doi.org/10.1103/RevModPhys.45.574">Crossref</a>

[95]. F. Lux, J. Mater. Sci. 28 (1993) 285‒301. <a href=" https://doi.org/10.1007/BF00357799">Crossref</a>

[96]. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J.D. Simon, S. Ito, Pigm. Cell Melanoma Res. 26 (2013) 616‒633. <a href=" https://doi.org/10.1111/pcmr.12121">Crossref</a>

[97]. V. Gargiulo, M. Alfè, R. Di Capua, A.R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, A. Pezzella, J. Mater. Chem. B 3 (2015) 5070‒5079. <a href=" https://doi.org/10.1039/C5TB00343A">Crossref</a>

[98]. M. Alfè, D. Spasiano, V. Gargiulo, G. Vitiello, R. Di Capua, R. Marotta, Appl. Catal. A-General 487 (2014) 91‒99. <a href=" https://doi.org/10.1016/j.apcata.2014.09.002">Crossref</a>

[99]. M. Olivi, M. Alfè, V. Gargiulo, F. Valle, F. Mura, M. Di Giosia, S. Rapino, C. Palleschi, D. Uccelletti, S. Fiorito, J. Nanopart. Res. 18 (2016) 358. <a href=" https://doi.org/10.1007/s11051-016-3673-x">Crossref</a>

Downloads

Published

2016-10-27

How to Cite

Capua, R. D., Gargiulo, V., & Alfe, M. (2016). Graphene-Like Layers from Unconventional Carbon Sources: New Perspectives on Hybrid Materials and π-system Synergisms. Eurasian Chemico-Technological Journal, 18(4), 263–274. https://doi.org/10.18321/ectj480

Issue

Section

Articles