Graphene-Like Layers from Unconventional Carbon Sources: New Perspectives on Hybrid Materials and π-system Synergisms
DOI:
https://doi.org/10.18321/ectj480Abstract
We developed a new approach for producing graphene-like (GL) materials through a two-steps oxidation/reduction method starting from a nanostructured (high surface) carbon black, a versatile carbonaceous material prone to be structurally and chemically modified in quite mild wet conditions. Atomic Force Microscopy and zetapotential measurements allowed to model the assembling mechanisms and the role of hydrophobic interactions, demonstrating the possibility to easily tune the surface morphology. GL materials have been then employed in a large variety of hybrid materials for innovative applications, and characterized by chemical, electrical, structural and spectroscopic techniques. With Metal-Organic Frameworks, GL produced conducting composites with electrical conductivity tunable by changing the concentration of the parent materials; Eumelanin/GL and TiO2-nanoparticles/GL were also studied for photocatalysis and biosensors applications.
References
[2]. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132‒145. <a href="https://doi.org/10.1021/cr900070d">Crossref</a>
[3]. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902‒907. <a href="https://doi.org/10.1021/nl0731872">Crossref</a>
[4]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146 (2008) 351‒355. <a href="https://doi.org/10.1016/j.ssc.2008.02.024">Crossref</a>
[5]. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8 (2008) 323‒327. <a href="https://doi.org/10.1021/nl072838r">Crossref</a>
[6]. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firvos, Nature 438 (2005) 197‒200. <a href="https://doi.org/10.1038/nature04233">Crossref</a>
[7]. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201‒204. <a href="https://doi.org/10.1038/nature04235">Crossref</a>
[8]. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385‒388. <a href="https://doi.org/10.1126/science.1157996">Crossref</a>
[9]. H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Sol. Energy Mater. Sol. Cells 95 (2010) 323‒325. <a href="https://doi.org/10.1016/j.solmat.2010.04.044">Crossref</a>
[10]. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim,K.S. Novoselov, Nano Lett. 8 (2008) 1704‒1708. <a href="https://doi.org/10.1021/nl080649i">Crossref</a>
[11]. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 2008, 8, 3498‒3502. <a href="https://doi.org/10.1021/nl802558y">Crossref</a>
[12]. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315 (2007)490‒493. <a href=" https://doi.org/10.1126/science.1136836">Crossref</a>
[13]. A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183‒191. <a href=" https://doi.org/10.1038/nmat1849">Crossref</a>
[14]. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T.Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nat. Nanotechnol. 3 (2008) 327‒331. <a href=" https://doi.org/10.1038/nnano.2008.96">Crossref</a>
[15]. M. Ruan, Y. Hu, Z. Guo, R. Dong, J. Palmer, J. Hankinson, C. Berger, W.A. de Heer, MRS Bull. 37 (2012) 1138‒1147. <a href="https://doi.org/10.1557/mrs.2012.231">Crossref</a>
[16]. R. Ruoff, Nat. Nanotech. 3 (2008) 10‒11. <a href=" https://doi.org/10.1038/nnano.2007.432">Crossref</a>
[17]. O.C. Compton, S.T. Nguyen, Small 6 (2010) 711– 723. <a href="https://doi.org/10.1002/smll.200901934">Crossref</a>
[18]. J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J. Huang, ACS Nano 5 (2011) 8943–8949. <a href=" https://doi.org/10.1021/nn203115u">Crossref</a>
[19]. R. Vidic, M. Suidan, G. Sorial, R. Brenner, Water Environ. Res. 65 (1993) 156–161. <a href="https://doi.org/10.2175/WER.65.2.8">Crossref</a>
[20]. S. Wu, P. Pendleton, J. Colloid Interface Sci. 243 (2001) 306‒315. <a href="https://doi.org/10.1006/jcis.2001.7905">Crossref</a>
[21]. S. Kwon, R. Vidic, E. Borguet, Carbon 40 (2002) 2351–2358. <a href="https://doi.org/10.1016/S0008-6223(02)00155-0">Crossref</a>
[22]. S. Kwon, R. Vidic, E. Borguet, Surf. Sci. 522 (2003) 17–26. <a href="https://doi.org/10.1016/S0039-6028(02)02316-6">Crossref</a>
[23]. C. Li, K. Yao, J. Liang, Carbon 41 (2003) 858–860. <a href="https://doi.org/10.1016/S0008-6223(02)00450-5">Crossref</a>
[24]. M. Toebes, F. Prinsloo, J. Bitter, A. van Dillen, K. de Jong, J. Catal. 214 (2003) 78–87.
[25]. N. Beck, S. Meech, P. Norman, L. Pears, Carbon 40 (2002) 531–540. <a href="https://doi.org/10.1016/S0008-6223(01)00144-0">Crossref</a>
[26]. Y. Li, C. Lee, B. Gullett, Fuel 82 (2003) 451–457. <a href="https://doi.org/10.1016/S0016-2361(02)00307-1">Crossref</a>
[27]. J. Liu, Z. He, S. Wang, New Carbon Mater. 2002 17 (2002) 20–24.
[28]. X. Huang, X. Qi, F. Boeyab, H. Zhang, Chem. Soc. Rev. 41 (2012) 666–686. <a href=" https://doi.org/10.1039/C1CS15078B">Crossref</a>
[29]. W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z.Y. Lu, X.J. Zhang, H. Zhang, H.H. Hng, Q. Yan, J. Mater. Chem. 21 (2011) 3422–3427. <a href=" https://doi.org/10.1039/C0JM03175E">Crossref</a>
[30]. J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Chen, H. Zhang, H.H. Hng, J. Ma, Q. Yan, Nanoscale 3 (2011) 1084–1089. <a href=" https://doi.org/10.1039/C0NR00744G">Crossref</a>
[31]. X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Nat. Commun. 2011, 2, 292_1‒6. <a href=" https://doi.org/10.1038/ncomms1291">Crossref</a>
[32]. S. Wang, B.M. Goh, K.K. Manga, Q. Bao, P. Yang, K.P. Loh, ACS Nano 4 (2010) 6180–6186. <a href=" https://doi.org/10.1021/nn101800n">Crossref</a>
[33]. T.H. Han, W.J. Lee, D.H. Lee, J.E. Kim, E.Y. Choi, S.O. Kim, Adv. Mater. 22 (2010) 2060–2064. <a href=" https://doi.org/10.1002/adma.200903221">Crossref</a>
[34]. H.F. Yang, Q.X. Zhang, C.S. Shan, F.H. Li, D.X. Han, L. Niu, Langmuir 26 (2010) 6708–6712. <a href=" https://doi.org/0.1021/la100365z">Crossref</a>
[35]. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, Angew. Chem., Int. Ed. 121 (2009) 4879–4881. <a href=" https://doi.org/10.1002/ange.200901479">Crossref</a>
[36]. H. Chang, L. Tang, Y. Wang, J. Jiang, J. Li, Anal. Chem. 82 (2010) 2341–2346. <a href=" https://doi.org/10.1021/ac9025384">Crossref</a>
[37]. Y. Wang, Z. Li, D. Hu, C.-T. Lin, J. Li, Y. Lin, J. Am. Chem. Soc. 132 (2010) 9274–9276. <a href=" https://doi.org/0.1021/ja103169v">Crossref</a>
[38]. X. Dong, B. Li, A. Wei, X. Cao, M.B. Chan-Park, H. Zhang, L.-J. Li, W. Huang, P. Chen, Carbon 49 (2011) 2944‒2949. <a href=" https://doi.org/10.1016/j.carbon.2011.03.009">Crossref</a>
[39]. V.C. Tung, L.-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang, Nano Lett. 9 (2009) 1949–1955. <a href=" https://doi.org/10.1021/nl9001525">Crossref</a>
[40]. E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277–2282. <a href=" https://doi.org/10.1021/nl800957b">Crossref</a>
[41]. D. Yu, L. Dai, J. Phys. Chem. Lett. 1 (2010) 467– 470. <a href=" https://doi.org/10.1021/jz9003137">Crossref</a>
[42]. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, Adv. Mater. 22 (2010) 3723–3728. <a href=" https://doi.org/10.1002/adma.201001029">Crossref</a>
[43]. M. Jahan, Q. Bao, J.-X. Yang, K.P. Loh, J. Am. Chem. Soc. 132 (2010) 14487–14495. <a href=" https://doi.org/10.1021/ja105089w">Crossref</a>
[44]. C. Petit, T.J. Bandosz, Adv. Funct. Mater. 20 (2010) 111–118. <a href=" https://doi.org/10.1002/adfm.200900880">Crossref</a>
[45]. C. Petit, J. Burress, T.J. Bandosz, Carbon 49 (2011) 563–572. <a href=" https://doi.org/10.1016/j.carbon.2010.09.059">Crossref</a>
[46]. J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.Y. Choi, J.M. Kim, J.B. Yoo, Adv. Mater. 21 (2009) 4383‒4387. <a href=" https://doi.org/10.1002/adma.200900726">Crossref</a>
[47]. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.H. Choi, B.H. Hong, Nature 457 (2009) 706‒710. <a href=" https://doi.org/10.1038/nature07719">Crossref</a>
[48]. D.S. Li, W. Windl, N.P. Padture, Adv. Mater. 21 (2009) 1243‒1246. <a href=" https://doi.org/10.1002/adma.200802417">Crossref</a>
[49]. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammens, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558‒1565. <a href=" https://doi.org/10.1016/j.carbon.2007.02.034">Crossref</a>
[50]. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai Nature 458 (2009) 877‒880. <a href=" https://doi.org/10.1038/nature07919">Crossref</a>
[51]. D. Luo, G. Zhang, J. Liu, X. Sun, J. Phys. Chem. C 115 (2011) 11327‒11335. <a href=" https://doi.org/10.1021/jp110001y">Crossref</a>
[52]. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson; R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110 (2006) 8535‒8539. <a href=" https://doi.org/10.1021/jp060936f">Crossref</a>
[53]. K.H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Mkhoyan, C.W. Macosko, ACS Nano 5 (2011) 1253‒1258. <a href=" https://doi.org/10.1021/nn1028967">Crossref</a>
[54]. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487‒1491. <a href=" https://doi.org/10.1021/nn800251f">Crossref</a>
[55]. K. Kinoshita, Carbon-Electrochemical and Physico-chemical Properties; Wiley: New York, 1988.
[56]. J.B. Donnet, R.C. Bansal, M.J. Wang, Carbon Black: Science and Technology, 2nd ed.; Dekker: New York, 1993.
[57]. E. Santini, F. Ravera, M. Ferrari, M. Alfè, A. Ciajolo, L. Liggieri, Colloids Surf. A 365 (2010) 189‒198. <a href=" https://doi.org/10.1016/j.colsurfa.2010.01.041">Crossref</a>
[58]. H. Shui, Fuel 84 (2005) 939‒941. <a href=" https://doi.org/10.1016/j.fuel.2004.12.001">Crossref</a>
[59]. K. Kamegawa, K. Nisiukubo, H. Yoshida, Carbon 36 (1998) 433‒441. <a href=" https://doi.org/10.1016/S0008-6223(97)00227-3">Crossref</a>
[60]. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22 (2011) 055705. <a href=" https://doi.org/10.1088/0957-4484/22/5/055705">Crossref</a>
[61]. I.K. Moon, J. Lee, H. Lee Chem. Commun. 47 (2011) 9681‒9683. <a href=" https://doi.org/10.1039/C1CC13312H">Crossref</a>
[62]. K. Kamegawa, K. Nisiukubo, M. Kodama, Y. Adachi, H. Yoshida Carbon 40 (2002) 1447‒1455. <a href=" https://doi.org/10.1016/S0008-6223(01)00310-4">Crossref</a>
[63]. M. Alfè, V. Gargiulo, R. Di Capua, F. Chiarella, J.N. Rouzaud, A. Vergara, A. Ciajolo, ACS Appl. Mater. Interfaces 4 (2012) 4491‒4498. <a href=" https://doi.org/10.1021/am301197q">Crossref</a>
[64]. Jr.V. Strelko, D.J. Malik, M. Streat Carbon 40 (2002) 95‒104. <a href=" https://doi.org/10.1016/S0008-6223(01)00082-3">Crossref</a>
[65]. H.F. Gorgulho, J.P. Mesquita, F. Goncalves, M.F.R. Pereira, J.L. Figueiredo, Carbon 46 (2008) 1544‒1555. <a href=" https://doi.org/10.1016/j.carbon.2008.06.045">Crossref</a>
[66]. M. Alfè, V. Gargiulo, R. Di Capua, Appl. Surf. Sci. 353 (2015) 628‒635. <a href=" https://doi.org/10.1016/j.apsusc.2015.06.117">Crossref</a>
[67]. D.H. Everett, Basic Principles of Colloid Science, The Royal Society of Chemistry, London, 1988.
[68]. J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martınez-Alonso, J.M.D. Tascon, Langmuir 25 (2009) 5957‒5968. <a href=" https://doi.org/10.1021/la804216z">Crossref</a>
[69]. P.G. de Gennes, Rev. Mod. Phys. 57 (1985) 827‒863. <a href=" https://doi.org/0.1103/RevModPhys.57.827">Crossref</a>
[70]. M. Alfè, V. Gargiulo, L. Lisi, R. Di Capua, Mater. Chem. Phys. 147 (2014) 744‒750. <a href=" https://doi.org/10.1016/j.matchemphys.2014.06.015">Crossref</a>
[71]. N. Stock; S. Biswas, Chem. Rev. 112 (2012) 933‒969. <a href=" https://doi.org/10.1021/cr200304e">Crossref</a>
[72]. H. Chae, D. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. Matzger, M. O'Keeffe, O.M. Yaghi, Nature 427 (2004) 523‒527. <a href=" https://doi.org/10.1038/nature02311">Crossref</a>
[73]. J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown Chem. Soc. Rev. 41 (2012) 2308‒2322. <a href=" https://doi.org/10.1039/C1CS15221A">Crossref</a>
[74]. N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 244−245 (2013) 444‒456. <a href=" https://doi.org/10.1016/j.jhazmat.2012.11.011">Crossref</a>
[75]. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long Chem. Rev. 112 (2012) 724‒781. <a href=" https://doi.org/10.1021/cr2003272">Crossref</a>
[76]. J.R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 255 (2011) 1791‒1823. <a href=" https://doi.org/10.1016/j.ccr.2011.02.012">Crossref</a>
[77]. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112 (2012) 869‒932. <a href=" https://doi.org/10.1021/cr200190s">Crossref</a>
[78]. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112 (2012) 782‒835. <a href=" https://doi.org/10.1021/cr200274s">Crossref</a>
[79]. M. Ranocchiari, J.A. van Bokhoven, Phys. Chem. Chem. Phys. 13 (2011) 6388‒6396. <a href=" https://doi.org/10.1039/C0CP02394A">Crossref</a>
[80]. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Chem. Rev. 112 (2012) 1232‒1268. <a href=" https://doi.org/10.1021/cr200256v">Crossref</a>
[81]. S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, R. Moos, Sensors (2009) 1574‒1589. <a href=" https://doi.org/10.3390/s90301574">Crossref</a>
[82]. S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R. Park, Chem. Mater. 21 (2009) 1893‒1897. <a href=" https://doi.org/10.1021/cm803502y">Crossref</a>
[83]. C. Petit, B. Mendoza, D. O'Donnell, T.J. Bandosz, Langmuir 27 (2011) 10234‒10242. <a href=" https://doi.org/10.1021/la2017424">Crossref</a>
[84]. C.H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 14 (2012) 13120‒13132. <a href=" https://doi.org/10.1039/C2CP41099K">Crossref</a>
[85]. S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148‒1150. <a href=" https://doi.org/10.1126/science.283.5405.1148">Crossref</a>
[86]. C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, Chem. Mater. 18 (2006) 1337‒1346. <a href=" https://doi.org/10.1021/cm052191g">Crossref</a>
[87]. J.J. Low, A.I. Benin, P. Jakubczak, J.F. Abrahamian, S.A. Faheem, R.R. Willis, J. Am. Chem. Soc. 131 (2009) 15834‒15842. <a href=" https://doi.org/10.1021/ja9061344">Crossref</a>
[88]. A. Santamaria, N. Yang, E. Eddings, F. Mondragon Combust. Flame 157 (2010) 33‒42. <a href=" https://doi.org/10.1016/j.combustflame.2009.09.016">Crossref</a>
[89]. Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun, J.S. Chang, Micropor. Mesopor. Mater. 119 (2009) 331‒337. <a href=" https://doi.org/10.1016/j.micromeso.2008.10.035">Crossref</a>
[90]. C. Petit, T.J. Bandosz, Adv. Funct. Mater. 21 (2011) 2108‒2117. <a href=" https://doi.org/10.1002/adfm.201002517">Crossref</a>
[91]. J.C. Huang, C.L. Wu, Adv. Polym. Technol. 19 (2000) 132−139. <a href=" https://doi.org/10.1002/(SICI)1098-2329(200022)19:2<132::AID-ADV6>3.0.CO;2-B">Crossref</a>
[92]. Y. Chekanov, R. Ohnogi, S. Asai, M. Sumita, J. Mater. Sci. 34 (1999) 5589‒5592. <a href=" https://doi.org/10.1023/A:100473721750">Crossref</a>
[93]. J.-C. Huang Adv. Polym. Technol. 21 (2002) 299‒313. <a href=" https://doi.org/10.1002/adv.10025">Crossref</a>
[94]. S. Kirkpatrick, Rev. Mod. Phys. 45 (1973) 574‒588. <a href=" https://doi.org/10.1103/RevModPhys.45.574">Crossref</a>
[95]. F. Lux, J. Mater. Sci. 28 (1993) 285‒301. <a href=" https://doi.org/10.1007/BF00357799">Crossref</a>
[96]. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J.D. Simon, S. Ito, Pigm. Cell Melanoma Res. 26 (2013) 616‒633. <a href=" https://doi.org/10.1111/pcmr.12121">Crossref</a>
[97]. V. Gargiulo, M. Alfè, R. Di Capua, A.R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, A. Pezzella, J. Mater. Chem. B 3 (2015) 5070‒5079. <a href=" https://doi.org/10.1039/C5TB00343A">Crossref</a>
[98]. M. Alfè, D. Spasiano, V. Gargiulo, G. Vitiello, R. Di Capua, R. Marotta, Appl. Catal. A-General 487 (2014) 91‒99. <a href=" https://doi.org/10.1016/j.apcata.2014.09.002">Crossref</a>
[99]. M. Olivi, M. Alfè, V. Gargiulo, F. Valle, F. Mura, M. Di Giosia, S. Rapino, C. Palleschi, D. Uccelletti, S. Fiorito, J. Nanopart. Res. 18 (2016) 358. <a href=" https://doi.org/10.1007/s11051-016-3673-x">Crossref</a>
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.