Promising Directions in Chemical Processing of Methane from Coal Industry. Part 1. Thermodynamic analysis
DOI:
https://doi.org/10.18321/ectj1433Keywords:
Coal methane, Chemical processing, Thermodynamic analysisAbstract
For the purpose of developing technology for the chemical processing of methane from the coal industry into valuable products, thermodynamic analysis of the major chemical reactions that occur in the multicomponent system СН4–СО2–H2O–air is carried out. The features of methane-containing gases differing from each other in chemical composition and corresponding to different stages of coal production are determined: ventilation air methane (VAM, methane concentration СCH4 less than 1 vol.%); mine/degassing methane of operating (СMM, СCH4 = 25–60 vol.%) or abandoned (AMM, СCH4 = 60–80 vol.%) coal mines; methane from unrelieved coal beds (СBM, СCH4 > 80 vol.%). Optimal conditions of the processes ensuring complete methane conversion and maximal yield of useful products are determined. The potential of combined reforming for efficient utilization of the methane-air mixture from coal mining into hydrogen-containing gas is demonstrated.
References
(1). Gosstandart of Russia. ОK 032-2002 All-Russian classifier of minerals and groundwater. https://files.stroyinf.ru/Data2/1/4293853/4293853488. htm
(2). M. Mastalerz, A. Drobniak, Coalbed Methane. Future Energy (3rd Ed.) 2020, p. 97–109. Crossref
(3). N.M. Storonskiy, V.T. Khryukin, D.V. Mitronov, E.V. Shvachko, Rus. Chem. Journal. 6 (2008) 63–72. (In Russ.).
(4). E.Yu. Makarova, D.V. Mitronov, Resource base and prospects for coalbed methane production in Russia. Georesursy [Georesources] 2 (2015) 101‒106. Crossref
(5). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 4: Fugitive Emissions. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_ Fugitive_Emissions.pdf
(6). Top coal mine methane emitters, IEA, 2020. Electronic resource. https://www.iea.org/data-and-statistics/charts/top-coal-mine-methane-emitters-2020
(7). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015–2050, United States Environmental Protection Agency (2019). https://www.epa.gov/sites/default/files/2020-05/documents/epa_non-co2_ greenhouse_gases_rpt-epa430r19010.pdf
(8). S.A. Lolon, J.F. Brune, G.E. Bogin, A. Juganda, Mining, Metall. Explor. 37 (2020) 1437–1449. Crossref
(9). United Nations Economic Commission for Europe. Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines. 2016.
(10). Trends in Atmospheric Methane. Global CH4 Monthly Means. https://gml.noaa.gov/ccgg/trends_ch4/
(11). D. Archer, Global Warming. Understanding the Forecast. Wiley-Blackwell; 2012.
(12). CMM and AMM Projects: Analysis of the 2021 CMM Project List. https://www.globalmethane.org/documents/PNNL_2021_CMM_Project Status and Trends_v4.pdf
(13). History and Outlooks of the Project. https://kuznetsk-dobycha.gazprom.ru/about/history/
(14). The outlooks for coal-bed gas production in Russia. Electronic resource. https://www.gazprom.ru/about/production/extraction/metan/
(15). Reduction of mine methane emission from the facilities of Vorkutaugol. https://www.barentsinfo.fi/beac/docs/Hot_Spot_Ko1_Vorkutaugol.pdf
(16). V.Yu. Zhiryakov, M.Yu. Tarasov, S.S. Ivanov, A.A. Zobnin, Oil gas territory [Territorija neftegaz] 8 (2013) 82–85 (In Russ.).
(17). The state and Protection of the Environment in the Russian Federation in 2020. State Report. Moscow, Ministry of Natural Resources of the Russian Federation; Lomonosov MSU: 2021. (In Russ.).
(18). G.V. Belov, B.G. Trusov. Thermodynamic modeling of chemically reacting systems. Moscow, Bauman MSTU; 2013. (In Russ.).
(19). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67. Crossref
(20). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 19 (2017) 3–16. Crossref
(21). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref
(22). I.Z. Ismagilov, A.V. Vosmerikov, L.L. Korobitsyna, E.V. Matus, M.A. Kerzhentsev, A.A. Stepanov, E.S. Mihaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 23 (2021) 147–168. Crossref
(23). M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 601–609. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.