The Importance of Detailed Chemical Mechanisms inGas Turbine Combustion Simulations

Authors

  • M. Braun-Unkhof Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • E. Goos Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • T. Kathrotia Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • T. Kick Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • C. Naumann Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • N. Slavinskaya Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
  • U. Riedel Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

DOI:

https://doi.org/10.18321/ectj182

Abstract

This paper – in memory of Jürgen Warnatz – summarizes selected recent papers of the Chemical Kinetics Group at the German Aerospace Center in Stuttgart. It shows the need for detailed chemical reaction mechanisms to understand practical combustion systems. A comprehensive description of combustion processes based on detailed mechanisms is especially important in the design of new gas turbine combustion chambers and in the optimization of existing ones to improve efficiency and to reduce pollutant emissions, with fuel-flexibility and load-flexibility ever becoming more important. Different aspects of combustion processes where detailed reaction mechanisms provide useful insights will be covered in this paper: Fuels (alternative jet fuels, biomass based fuels), pollutants (soot), diagnostics (chemiluminescence), and thermochemistry. Furthermore, the underlying thermodynamics inevitably connected with detailed reaction schemes will be addressed. Exemplified results will be presented clearly demonstrating the predictive capabilities of detailed reaction mechanisms to be explored in computational fluid dynamic simulations to further optimize technical combustion systems.

References

[1]. P. Dagaut, M. Cathonnet, Prog. Energ. Combust. 32 (2006) 48–92.

[2]. J. Hileman, R. Stratton, P. Donohoo, J. Propul. Power 26 (2010) 1184–1195.

[3]. U.S. Energy Information Administration, http://www.eia.gov.

[4]. IPPC Intergovernmental Panel on Climate Change, 2007:”Climate Change 2007: Mitigation of Climate Change”, http://www. ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_ wg3_report_
mitigation_of_climate_change.htm.

[5]. M. Braun-Unkhoff, P. Le Clercq, M. Aigner, Proc. 17th European Biomass Conference, Hamburg, Germany (2009).

[6]. M. Braun-Unkhoff, P. Frank, A. El Bakali, A. Ristori, P. Dagaut, M. Cathonnet, A Detailed Kinetic Reaction Mechanism for Kerosene Oxidation at Atmospheric Pressure. 16th International Symposium on Gas Kinetics,
Cambridge, UK (2000).

[7]. P. Dagaut, Phys. Chem. Chem. Phys. 4 (2002) 2079–2094.

[8]. Th. Kick, T. Kathrotia, M. Braun-Unkhoff, U. Riedel, Proceedings of GT2011, ASME Turbo Expo, Vancouver (Canada), GT2011-45606

[9]. Th. Kick, J. Herbst, T. Kathrotia, J. Marquetand, M. Braun-Unkhoff, C. Naumann, U. Riedel, Energy 43 (2012) 111–123.

[10]. N. Slavinskaya, Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno (USA) (2008) Paper no. 0992.

[11]. N. Slavinskaya, A. Zizin, M. Aigner, Proceedings of GT2009, ASME Turbo Expo, Orlando (USA), GT2009-60012.

[12]. ALFA-BIRD: Alternative Fuels and Biofuels for Aircraft, EUFP7/2007-2013, grant agreement # 213266, coordinator: EU-VRi, (Germany), http://www.alfa-bird.eu-vri.eu

[13]. S. Blakey, L. Rye, C. Wilson, Proc. Combust. Inst. 33 (2011) 2863–2885.

[14]. C. Moses, P. Roets, Proceedings of GT2008, ASME Turbo Expo, Berlin (Germany), GT2008-50845.

[15]. burn-FAIR (2011) http://presse.lufthansa.com/en/newsreleases/singleview/archive/2010/november/29/ article/1828.html.

[16]. S. Gadde, J. Wu, A. Gulati, G. McQuiggan, B. Koestlin, B. Prade, Proceedings of GT2006, ASME Turbo Expo, Orlando (USA), GT2006-90970.

[17]. E. Lindfeldt, M. Westermark, Proceedings of GT2006, ASME Turbo Expo, Orlando (USA), GT2006-90183.

[18]. F. Delattin, S. Bram, J. De Ruyck, Proceedings of GT2006, ASME Turbo Expo, Orlando (USA), GT2006-90012.

[19]. M. Braun-Unkhoff, N. Slavinskaya, M. Aigner, Proceedings of GT2009, ASME Turbo Expo, Orlando (USA), GT2009-60214.

[20]. T. Panne, A. Widenhorn, M. Aigner, M. Masgrau, Proceedings of GT2009, ASME Turbo Expo, Orlando (USA), GT2009-59048.

[21]. M. Hohloch, A. Widenhorn, D. Lebküchner, T. Panne, M. Aigner, Proceedings of GT2008, ASME Turbo Expo, Berlin (Germany), GT2008-50443.

[22]. T. Methling, M. Braun-Unkhoff, U. Riedel, Proc. of GT2013, ASME Turbo Expo, San Antonio (USA), GT2013-64994.

[23]. M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, Proc. Combust. Inst. 27 (1998) 329–336.

[24]. J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122–136.

[25]. H. Wang, M. Frenklach, Combust. Flame 110 (1997) 173–221.

[26]. D. Hu, M. Braun-Unkhoff, P. Frank, Combust. Sci. Technol. 149 (1999) 79–94.

[27]. S. Dworkin, Q. Zhang, M. Thomson, N. Slavinskaya, U. Riedel, Combust. Flame 158 (2011) 1682–1695.

[28]. N. Slavinskaya, U. Riedel, S. Dworkin, M. Thomson, Combust. Flame 159 (2012) 979–995.

[29]. H. Richter, M. Braun-Unkhoff, S. Granata, J. Yu, E. Goos, N. Slavinskaya, P. Frank and W. Green, J. Howard, Proc. European Combustion Meeting ECM 2005, Louvain-la-Neuve, 3.-6. April 2005, paper 163.

[30]. N. Slavinskaya, P. Frank, Combust. Flame 156 (2009) 1705–1722.

[31]. M. Domenico, P. Gerlinger, M. Aigner, Combust. Flame 157 (2010) 246–258.

[32]. F. Gelbard, J. Seinfeld, J. Colloid Interface Sci. 78 (1980) 485–501.

[33]. F. Gelbard, Y. Tambour, J. Seinfeld, J. Colloid Interface Sci. 76 (1980) 541–556.

[34]. J. Marquetand, M. Fischer, I. Naydenova, U. Riedel, Flow and Combustion in Advanced Gas Turbine Combustors, Fluid Mechanics and Its Applications Fluid Mechanics and its Application, Ed. R. Moreau, Springer (2013) 205–233.

[35]. S. Dworkin, M. Smooke, V. Giovangigli, Proc. Combust. Inst. 32 (2009) 1165–1172.

[36]. M. Saffaripour, P. Zabeti, S. Dworkin, Q. Zhang, H. Guo, F. Liu, G. Smallwood, M. Thomson, Proc. Combust. Inst. 33 (2011) 601–608.

[37]. M. Frenklach, H. Wang, Proc. Combust. Inst. 23 (1990) 1559–1566.

[38]. M. Frenklach, Proc. Combust. Inst. 26 (1996) 2285–2293.

[39]. A. D’Anna, J. Kent, Combust. Flame 121 (2000) 575–592.

[40]. A. D’Anna, J. Kent, R. Santoro, Combust. Sci. Technol. 179 (2007) 355–369.

[41]. N. Marinov, W. Pitz, C. Westbrook, M. Castaldi, S. Senkan, Combust. Sci. Technol. 116 (1996) 211–287.

[42]. N. Marinov, W. Pitz, C. Westbrook, A. Vincitore, M. Castaldi, S. Senkan, Combust. Flame 114 (1998) 192–213.

[43]. M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, Combust. Flame 152 (2008) 28–59.

[44]. A.G. Gaydon “The spectroscopy of flames” (1974) Wiley: New York.

[45]. G. Smith, J. Luque, C. Park, J. Jeffries, D. Crosley, Combust. Flame 131 (2002) 59–69.

[46]. T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Combust. Flame 157 (2010) 1261–1273.

[47]. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B 107 (2012) 571–584.

[48]. H. Najm, P. Paul, C. Mueller, P. Wyckoff, Combust. Flame 113 (1998) 312–332.

[49]. C. Vagelopoulos, J. Frank, Proc. Combust. Inst. 30 (2005) 241–249.

[50]. E. Goos, A. Burcat, Thermochemistry, in “Handbook of Combustion” M. Lackner, F. Winter, A.K. Agarwal (Eds.), 1 (2010) 135–152.

[51]. L. León, E. Goos, C. Klauer, L. Seidel, F. Mauss, T. Zeuch, Proc. 24th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2013), July 28 August 2, 2013 Taipei, Taiwan ICDERS-0259, Combust.
Flame, to be submitted (2014).

[52]. E. Goos, C. Sickfeld, F. Mauß, L. Seidel, B. Ruscic, A. Burcat, T. Zeuch, Proc. Combust. Inst. 34 (2013) 657–666.

[53]. E. Goos, A. Burcat, “Overview of Thermochemistry and its Application to Reaction Kinetics” H. DaCosta, M. Fan (Eds.), John Wiley & Sons (2011) 3–32. http://media.wiley.com/product_data/excerpt/08/04705823/0470582308-186.pdf

[54]. E. Goos, G. Lendvay, Calculation of molecular chemical data and its availability in databases in “Development of detailed chemical kinetic models for cleaner combustion” F. Battin-Leclerc, J. Simmie, E. Blurock (Eds.), Series: Green Energy and Technology, Springer-Verlag London (2013) 515–547.

[55]. G. Dixon-Lewis, P. Marshall, B. Ruscic, A. Burcat, E. Goos, A. Cuoci, A. Frassoldati, T. Faravelli, P. Glarborg, Combust. Flame 159 (2012) 528–540.

[56]. X. You, H. Wang, E. Goos, C. Sung, S. Klippenstein, J. Phys. Chem. A 111 (2007) 4031–4042.

[57]. T. Lin, E. Goos, U. Riedel, Fuel Process. Technology 115 (2013) 246–253.

[58]. E. Goos, U. Riedel, L. Zhao, L. Blum, Energy Procedia 4 (2011) 3778–3785.

[59]. ASTM D7655, addendum to ASTM Standard D1655 “ASTM D7566 is a new specification for certifying a 50% blend of Jet A-1 and SPK produced from biomass using a Fischer Tropsch process” www.astm.org.

[60]. A. Mze-Ahmed, P. Dagaut, K. Hadj-Ali, G. Dayma, T. Kick, J. Herbst, T. Kathrotia, M. Braun-Unkhoff, J. Herzler, C. Naumann, U. Riedel, Energy & Fuels, 26, 6070-6079.

[61]. V. Vukadinovic, P. Habisreuther, N. Zarzalis, Proceedings of GT2012, ASME Turbo Expo, Copenhagen (Denmark), GT2012-69449.

[62]. P. Dagaut, F. Karsenty, G. Dayma, P. Diévart, K. Hadj-Ali, A. Mze-Ahmed, M. Braun-Unkhoff, J. Herzler,
T. Kathrotia, T. Kick, C. Naumann, U. Riedel, L. Thomas, Combust. Flame 161 (2014) 835–847.

[63]. A. Lutz, R. Kee, J. Miller, SAND87-8248, Sandia National Laboratories: Livermore, CA (1987).

[64]. R. Kee, F. Rupley, J. A. Miller, SAND89-8009, Sandia National Laboratories: Livermore, CA (1989).

[65]. J. Herzler, C. Naumann, Proc. Combust. Inst. 32 (2009) 213–220.

[66]. “Entwicklung und Validierung von Design-Werkzeugen für die Auslegung von dezentralen Biomasse-Kraftwerkskonzepten zur kombinierten Strom- und Wärmeerzeugung (DedeBio)“, project funded by Stiftung
Energieforschung Baden-Württemberg, under contract number FZK A 283 09.

[67]. J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. Dryer, J. Jr. Scire, Int. J. Chem. Kinet. 39 (2007) 109–136, http://www.princeton.edu/mae/people/faculty/dryer/homepage/kinetic_models/c1-model/

[68]. J. Herzler, C. Naumann, Comb. Sci. Technol. 180 (2008) 2015–2028.

[69]. J. Herzler, J. Herbst, Th. Kick, C. Naumann, M. Braun-Unkhoff, U. Riedel, Proceedings of GT2012, ASME Turbo Expo, Copenhagen (Denmark), GT2012-69282.

[70]. V. Chernov, M. Thomson, S. Dworkin, N. Slavinskaya, U. Riedel, Combust. Flame 161 (2014) 592–601.

[71]. M. Castaldi, N. Marinov, C. Melius, J. Huang, S. Senkan, W. Pitz, C. Westbrook, Proc. Combust. Inst. 26 (1996) 693–702.

[72]. M. Tsurikov, K. Geigle, V. Krüger Y. Schneider-Kühnle, W. Stricker, R. Lückerath, R. Hadef, M. Aigner, Combust. Sci. Technol. 177 (2005) 1835–1862.

[73]. R. Puri, T. Richardson, R. Santoro, R. Dobbins, Combust. Flame 92 (1993) 320–333.

[74]. R. Santoro, T. Yeh, J. Horvath, H. Semerjian, Combust. Sci. Technol. 53 (1987) 89–115.

[75]. C. Megaridis, R. Dobbins, Combust. Sci. Technol. 66 (1989) 1–16.

[76]. S. Iyer, T. Litzinger, S. Lee, R. Santoro, Combust. Flame 149 (2007) 206–216.

[77]. J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28 (2000)1757–1764.

[78]. C. Panoutsos, Y. Hardalupas, A. Taylor, Combust. Flame 156 (2009) 273–291.

[79]. T. Kathrotia, U. Riedel, J. Warnatz, 4th Euro. Combust. Meet. Vienna (2009) paper no. P809002.

[80]. C. Fenimore, Proc. Combust. Inst. 13 (1971) 373– 380.

[81]. L. Cui, K. Morokuma, J. Bowman, S. Klippenstein, J. Chem. Phys. 110 (1999) 9469–9482.

[82]. L. Moskaleva, M. Lin, Proc. Combust. Inst. 28 (2000) 2393–2401.

[83]. L. Harding, S. Klippenstein, J. Miller, J. Phys. Chem. A 112 (2008) 522–532.

[84]. V. Vasudevan, R. Hanson, C. Bowman, D. Golden, D. Davidson, J. Phys. Chem. A 111 (2007) 11818–11830.

[85]. B. Ruscic, R. Pinzon, M. Morton, G. von Laszevski, S. Bittner, S. Nijsure, K. Amin, M. Minkoff, A. Wagner,
J. Phys. Chem. A 108 (2004) 9979–9997.

[86]. B. Ruscic, R. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, A. Wagner,
J. Phys.Conf. Ser. 16 (2005) 561–570.

[87]. J. Martin, P. Taylor, J. Francois, R. Gijbels, Chem. Phys. Lett. 226 (1994) 475–483.

[88]. R. Bise, H. Choi, D. Neumark, J. Chem. Phys. 111 (1999) 4923–4932.

[89]. http://dx.doi.org/10.1016/j.proci.2012.06.128

[90]. E. Goos, A. Burcat, B. Ruscic, “Extended Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables”; available at http://burcat.technion.
ac.il/dir, also directly available from Dr. Elke Goos.

[91]. N. Lamoureux, P. Desgroux, A. El Bakali, J. Pauwels, Combust. Flame 157 (2010) 1929–1941.

Downloads

Published

2014-09-30

How to Cite

Braun-Unkhof, M., Goos, E., Kathrotia, T., Kick, T., Naumann, C., Slavinskaya, N., & Riedel, U. (2014). The Importance of Detailed Chemical Mechanisms inGas Turbine Combustion Simulations. Eurasian Chemico-Technological Journal, 16(2-3), 179–194. https://doi.org/10.18321/ectj182

Issue

Section

Articles