Low Temperature Oxidation of Cyclohexane: Uncertainty of Important Thermo-Chemical Properties

Authors

  • M. Abbasi Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffewaldring 38-40, Stuttgart, Germany
  • N. Slavinskaya Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffewaldring 38-40, Stuttgart, Germany
  • U. Riedel Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffewaldring 38-40, Stuttgart, Germany

DOI:

https://doi.org/10.18321/ectj759

Keywords:

thermodynamic properties, cyclohexane, oxidation, kinetic mechanism, group additivity

Abstract

The study of the standard formation enthalpy, entropy, and heat capacity for key species relevant to the low-temperature combustion of cyclohexane has been performed by applying the group additivity method of Benson. The properties of 18 Benson groups (8 of them for the first time), and 10 ring correction factors for cyclic species were estimated through different empirical and semi-empirical methods. The method validation proceeded through comparison of predicted values for certain number of newly estimated groups and available literature data derived from quantum chemistry estimations. Further validations of the estimated properties of groups have been provided by comparing estimated properties of test species with data in literature and kinetic databases. Also the standard deviation between prediction and reported values has been evaluated for each validation case. A similar approach has been applied for validation of the estimated ring correction groups. For selected well-studied cyclic molecules the predicted values and the literature data have been compared with each other, and the standard deviations have been also reported. The evaluated properties of the cyclohexane relevant species were also compared with similar ones available in other kinetic models and in databases. At the end the estimated properties have been presented in a tabulated form of NASA polynomial coefficients with extrapolation up to 3500 K.

References

(1). M. Abbasi, N.A. Slavinskaya, U. Riedel, "Kinetic Modeling of Cyclohexane Oxidation Including PAH Formation". 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017. Crossref

(2). E.J. Silke, W.J. Pitz, C.K. Westbrook, M. Ribaucour, J. Phys. Chem. A 111 (2007) 3761– 3775. Crossref

(3). F. Buda, B. Heyberger, R. Fournet, P.A. Glaude, V. Warth, F. Battin-Leclerc, Energy Fuels 20 (2006) 1450–1459. Crossref

(4). Z. Serinyel, O. Herbinet, O. Frottier, P. Dirrenberger, V. Warth, P.A. Glaude, F. Battin- Leclerc, Combust. Flame 160 (2013) 2319–2332. Crossref

(5). E.R. Ritter, J.W. Bozzelli, Int. J. Chem. Kinet. 23 (1991) 767. Crossref

(6). S.W. Benson, Thermochemical Kinetics, New York, USA: John Wiley & Sons Ltd., 2nd Edition, 1976.

(7). C. Muller, V. Michel, G. Scacchi, G.M. Côme, J. Chim. Phys. 92 (1995) 1154–1178. Crossref

(8). B. Sirjean, P.A. Glaude, M.F. Ruiz-Lopèz, R. Fournet, J. Phys. Chem. A 113 (2009) 6924– 6935. Crossref

(9). B. Sirjean, P.A. Glaude, M.F. Ruiz-Lopèz, R. Fournet, J. Phys. Chem. A 112 (2008) 11598– 11610. Crossref

(10). "National Institute of Standards and Technology," [Online]. Available: Link . [Accessed 1 12 2016].

(11). A. Burcat, E. Goos, B. Ruscic, "Ideal Gas Thermochemical Database with updates from Active Thermochemical Tables," [Online]. Available: Link . [Accessed 1 12 2016].

(12). F.D. Rossini, K. S. Pitzer, R.L. Arnett, R.M. Braun, and G.C. Pimentel, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons & Related Compounds," Comprising the Tables of the American Petroleum Institute Research Project 44 Extant as of December 31, 1952 (Carnegie Press, Pittsburgh, 1953).

(13). R.C. Wilhoit, J. Chao, K.R. Hall, J. Phys. Chem. Ref. Data 14 (1985). Crossref

(14). C.F. Goldsmith, G.R. Magoon, W.H. Green, J. Phys. Chem. A 116 (2012) 9033–9057. Crossref

(15). S.W. Benson, F.R. Cruickshank, D.M. Golden, G.R. Haugen, H.E. O’Neal, A.S. Rodgers, R. Shaw, R. Walsh, Chem. Rev. 69 (1969) 279– 324. Crossref

(16). S.W. Benson, and J.H. Buss, J. Chem. Phys. 29 (1958) 546. Crossref

(17). M. Luria, and S.W. Benson, J. Chem. Eng. Data 22 (1977) 90–100. Crossref

(18). H.E. O’Neal, S.W. Benson, "Thermochemistry of free radicals," in Free Radicals, ed. J.K. Kochi, New York, Wiley, 1973, p. Chapter 17.

(19). N. Cohen, J. Phys. Chem. Ref. Data 25 (1996)1411. Crossref

(20). M.K. Sabbe, M. Saeys, M. Reyniers, G.B. Marin, J. Phys. Chem. A 109 (2005) 7466–7480. Crossref

(21). M.K. Sabbe, F. Vleeschouwer, M. Reyniers, M. Waroquier, G.B. Marin, J. Phys. Chem. A 112 (2008) 12235–12251. Crossref

(22). S.S. Khan, X. Yu, J.R. Wade, R.D. Malmgren, L.J. Broadbelt, J. Phys. Chem. A 113 (2009) 5176–5194. Crossref

(23). A. Bhattacharya, S. Shivalkar, J. Chem. Eng. Data 51 (2006) 1169–1181. Crossref

(24). E.S. Domalski, E.D. Hearing, "Estimation of the Thermodynamic properties of C-H-N-O-S-Halogen Compounds at 298 K, Chemical Kinetics and Thermodynamics Division," National Institute of Standards and Technology, Gaithersburg, MD 2089-0001, 1993.

(25). O.V. Dorofeeva, P.I. Tolmach, Thermonchim. Acta 219 (1993) 361–364. Crossref

(26). N. Hansen, M.R. Harper, and W.H. Green, Phys. Chem. Chem. Phys. 13 (2011) 20262–20274. Crossref

(27). K.G. Joback, R.C. Reid, Chem. Eng. Comm. 57 (1987) 233–243. Crossref

(28). N. Cohen, S.W. Benson, Chem. Rev. 93 (1993) 2419–2438. Crossref

(29). T.H. Lay, T. Yamada, P.L. Tsai, J.W. Bozzelli, J. Phys. Chem. A 101 (1997) 2471–2477. Crossref

(30). C.Y. Sheng, J.W. Bozelli, A.M. Dean, A.Y. Chang, J. Phys. Chem. A 106 (2002) 7276–7293. Crossref

(31). O.V. Dorofeeva, Thermochim. Acta 200 (1992) 121–150. Crossref

(32). G. Da Silva, J.W. Bozzelli, J. Phys. Chem. A 110 (2006) 13058–13067. Crossref

(33). J.L. Holmes, F.P. Lossing, P.M. Mayer, J. Am. Chem. Soc. 113 (1991) 9723–9728. Crossref

(34). H. William, Green, Richard H. West, and the RMG Team, “Reaction Mechanism Generator- “RMG”,” [Online]. Available: Link . [Accessed 1 9 2017].

(35). V.S. Kurbatov, I.N. Silin, "New method for minimizing regular functions with constraints on parameter region". Nucl. Instrum. Methods,. Vol. A 345, 1994, pp. 346–350.

(36). S. Sokolov und I. Silin. Preprint JINR D-810, Dubna, 1961.

(37). L. Fokin, N. Slavinskaya, Institute for High Temperatures, USSR Academy of Sciences, Bd. 25, Nr. 1, pp. 40–45, 1987.

Downloads

Published

2018-12-21

How to Cite

Abbasi, M., Slavinskaya, N., & Riedel, U. (2018). Low Temperature Oxidation of Cyclohexane: Uncertainty of Important Thermo-Chemical Properties. Eurasian Chemico-Technological Journal, 20(4), 263–275. https://doi.org/10.18321/ectj759

Issue

Section

Articles