Chemical Kinetic Modeling in Coal Gasification Processes: an Overview

Authors

  • N. A. Slavinskaya Institute of Combustion Technology German Aerospace Center (DLR), Stuttgart, Germany
  • U. Riedel Institute of Combustion Technology German Aerospace Center (DLR), Stuttgart, Germany
  • V. E. Messerle Research Institute of Experimental and Theoretical Physics, Al-Farabi Kazakn National University, Almaty, Kazakhstan
  • A. B. Ustimenko Research Institute of Experimental and Theoretical Physics, Al-Farabi Kazakn National University, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj134

Abstract

Coal is the fuel most able to cover world deficiencies in oil and natural gas. This motivates the development of new and more effective technologies for coal conversion into other fuels. Such technologies are focused on coal gasification with production of syngas or gaseous hydrocarbon fuels, as well as on direct coal liquefaction with production of liquid fuels. The benefits of plasma application in these technologies is based on the high selectivity of the plasma chemical processes, the high efficiency of conversion of different types of coal including those of low quality, relative simplicity of the process control, and significant reduction in the production of ashes, sulphur, and nitrogen oxides. In the coal gasifier, two-phase turbulent flow is coupled with heating and evaporation of coal particles, devolatilization of volatile material, the char combustion  (heterogeneous/porous oxidation) or gasification, the gas phase reaction/oxidation (homogeneous oxidation) of gaseous products from coal particles. The present work reviews literature data concerning reaction kinetic modelling in coal gasification. Current state of related kinetic models for heterogeneous/homogeneous oxidation of coal particles, included plasma assisted, is reviewed.

References

1. Messerle, V.E. and Peregudov, V.S., 1995, “Ignition and Stabilisation of Combustion of Pulverised Coal Fuels by Thermal Plasma. Investigation and Design of Thermal Plasma Technology”, Cambridge Interscience Publishing,
London, 2, pp. 323-343.

2. Gorokhovski, M.A., Jankoski, Z., Lockwood, F.C., Karpenko, E.I., Messerle, V.E. and Ustimenko, A.B., 2007, “Enhancement of pulverized coal combustion by plasma technology”, Combust. Sci. and Technol. 179(10), pp. 2065-2090.

3. Green E.S., Meyreddy R.R., Pamidimukkala K.M., 2008, “A molecular model of coal pyrolysis”, International Journal of Quantum Chemistry 26(S18), pp. 589-599.

4. Zhukov, M.F., Kalinenko, R.A., Levicki, A.A., Polak, L.S., 1990, “Plasmochimichskaya pererabotka uglja” (in Russia), Moskva, Nauka, pp. 200.

5. Basic Technologies for Advanced Coal Utilization, NEDO-commissioned project, 2004, FY2000-FY2004, Japan Coal Energy Center.

6. Lemaignen, L., Zhuo, Y., Reed, G.P., Dugwell, D.R., Kandiyoti, R., 2002, “Factors governing reactivity in low temperature coal gasification. Part II. An attempt to correlate conversion with inorganic and mineral constituents”, Fuel 81, pp. 315-325.

7. Liu, G., Benyon P., Benfell, K.E., et al., 2000, “The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions”, Fuel 79 , pp. 617-626.

8. Wall, T.F., Liu, G., Wu, H., Roberts, D., et al., 2002, “The effects of pressure on coal reactions during pulverised coal combustion and gasification“, Prog.Ener.Comb.Sci. 28, pp. 405-433.

9. Niksa, S., Liu, G., Hurt, R. H., 2003, "Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation", Prog. Ener. Comb. Sci. 29, pp. 425-477.

10. Liu, G., Niksa S., 2004, "Coal conversion submodels for design applications at elevated pressures.
Part II. Char gasification", Prog. Ener. Comb. Sci. 30, pp. 679-717.

11. Zhuo, Y., Messenböck, R., Collot, A.-G., Megaritis, A., Paterson, N., Dugwell, D.R., Kandiyoti, R. 2000, “Conversion of coal particles in pyrolysis and gasification: comparison of conversions in a pilot-scale gasifier and bench-scale test equipment”, Fuel 79, pp. 793-802.

12. Hurt, R.H., Calo, J.M., “Semi-global intrinsic kinetics for char combustion modeling”, 2001, Combust. Flame 125, pp. 1138-1149.

13. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., “Kinetic Modeling of Low-Temperature Oxidation of Coal”, 2002, Combust. Flame 131, pp. 452-469.

14. Mießen, G., 2000, “Simulation der Koksverbrennung unter Verwendung detaillierter Reaktionsmechanismen”,
PhD Dissertation, Ruprecht - Karls – Universität Heidelberg.

15. Gentry, R.A., Daly, B.J. and Amsden, A.A., 1987, KIVACOAL: A modified version of the KIVA program for calculating the combustion dynamics of a coal-water slurry in a diesel engine cylinder, Los Alamos National Laboratory Report LA-l 1045-MS.

16. Radulovic, P.T., Ghani, M.U., Smoot, L.D., 1995, “An improved model for fixed bed coal combustion and gasification”, Fuel 74 , pp. 582-594.

17. Lockwood, F.C., Mahmud, T., and Yehia, M.A., 1998, “Simulation of pulverised coal test furnace performance”, Fuel 77(12), pp. 1329-1337.

18. Yang, L., 2004, “Study on the model experiment and numerical simulation for underground coal gasification”, Fuel 83, pp. 573-584.

19. Gorokhovski, M., Karpenko, E.I., Lockwood, F.C., Messerle, V.E., B. Trusov, G., Ustimenko, A.B., 2005. “Plasma technologies for solid fuels:experiment and theory”, Journal of the Energy Institute 78(4), pp. 157-171.

20. Piffaretti, S., Abdon, A., Engelbrecht, E. G. et al., 2008, “Validation of a cfd based modelling approach to predict coal combustion using detailed measurements within a pulverized coal boiler”, ANSYS Conference & 26. CADFEM
users’ meeting, Darmstadt, Germany.

21. Molina, A. and Mondrago, N.F., 1998. “Reactivity of coal gasification with steam and CO2”, Fuel 77(15), pp. 1831-1839.

22. Choi, Y.C., Li, X.Y., Park, T.J., Kim, J.H., Lee, J.G., 2001, “Numerical study on the coal gasification characteristics in an entrained flow gasifer”, Fuel 80, pp. 2193-2201.

23. Biba, V., Macak, J., Klose, E., Malecha, J., 1978, “Mathematical Model for the Gasification of Coal under Pressure”, Ind. Eng. Chem. Process Des. Dev. 17(1), pp. 92-98.

24. Beath, A.C., 1996, “Mathematical modelling of entrained flow coal gasification”, PhD Thesis, University of Newcastle, Australia.

25. Norman, J.J., Pourkashanian, M., Williams, A., 1997, “Modelling the formation and emission of environmentally unfriendly coal species in some”, Fuel 76(13), pp. 201-1216.

26. Kerinin, E.V., Shifrin, E.I., 1993, ”Mathematical model of coal combustion and gasification in a passage on a underground gas generator”, Translation from Fizika Goreniya I vzryva (on Russia), 29(2), pp. 21-28.

27. Kalinenko R.A., Kuznetsov, A.P., Levitsky, A.A., Messerle, V.E., 1993, “Pulverized Coal Plasma gasification”, Plasma Chemistry and Plasma Processing 13(1), pp. 141-167.

28. Kayhan, F., Reklaitis, J.V., 1980, “Modelling of staged fluidized bed coal pyrolysis reactors”, Ind. and Eng.Chem.Process Des. and Develop. 19, pp. 15-23.

29. Kyotani, T., Ito K., Tomita, A., Radovic, L. R., 1996, “Monte Carlo Simulation of Carbon Gasification Using Molecular Orbital Theory”, AIChE Journal 42(8), pp. 2303-2307.

30. Chen, S.G., Yang, R.T., Kapteijn F., Moulijn J.A., 1993, “ A new surface oxygen complex on carbon: toward a unified mechanism for carbon gasification reaction”, Ind.Eng.Che.Res. 32, pp. 2535-2540.

31. Ahmed, S., Back, M.H., Roscoe, J.M., 1987, “A Kinetic Model for the Low Temperature Oxidation of Carbon: I.”, Combust. Flame 70, pp. 1-16.

32. Back, M.H., 1997, “The kinetics of the reaction of carbon with oxygen.”, Can. J. Chem. 75, pp. 249-257.

33. Crick, T.M., Silveston, P.L., Miura, K., Hashimoto, K., 1993, “ Analysis of coal char gasification by use of the pulse method and 18O Isotope”, Energy Fuels 7, pp. 1054-1061.

34. Moulijn, J.A., Kapteijn, F., 1995, “Towards a uni_ed theory of reactions of carbon with oxygen-containig molecules”, Carbon 33(8), pp. 1155-1165.

35. Skokova, K. and Radovic, L.R., 1996, “On the Role of Carbon-Oxygen Surface Complexes in the Carbon/Oxygen Reaction Mechanism,” ACS National Meeting, New Orleans.

36. Radovic, L.R., Quli, F.A., Karra, M., Kokenes, S.C., Skokova, K.A., Lee, Y.-J. and Thrower, P.A., 1997, “Oxidation Resistance of Carbon/Carbon Composites: Effects of Porosity and Heteroatoms,” International Conference in
Commemoration of the 45th Anniversary of Chungnam National University, Taejon, Korea.

37. Mitchell, R.E., Kee, R.J., Glarborg, P., and Coltrin, M.E., 1991, “The effect of CO conversion in the boundary layers surrounding pulverizedcoal char particles”, Proc. Combuts. Inst. 23, pp. 1169-1176.

38. Libby, P. A., and Blake, T. R., 1979, “Theoretical study of burning carbon particles”, Combust. Flame 36,
pp. 139-169.

39. Smith, I.W., 1982, “The combustion rate of coal chars: a review”, Proc. Combust. Inst. 19, pp. 1045-1065.

40. Gremyachkin, V. M., Förtsch, D., Schnell, U., Hein K.R.G., 2002, ”A Model of the Combustion of a Porous Carbon Particle in Oxygen”, Combust. Flame 130, pp. 161-170.

41. Chelliah, H.K., Makino, A., Kato, I., Araki, N. and Law, C.K., 1996, “Effects of porosity and carbon radical reactions on graphite oxidation”, Combust. Flame 104, pp. 469-480.

42. Murphy, J.J., Shaddix,C. R., 2006, “Combustion kinetics of coal chars in oxygen-enriched environments“,
Combust. Flame 144, pp. 710-729.

43. Kassebaum, J.L., Chelliah, H.K., 2009, “Oxidation of isolated porous carbon particles: Comprehensive
numerical model”, Combustion Theory and Modelling 13(1), pp. 143-166.

44. Yetter, R.A., Dryer, F.L. and Rabitz, H., 1991, “Flow reactor studies of carbon monoxide/ hydrogen/oxygen kinetics”, Combust. Sci. and Technol. 79, pp. 129-140.

45. Makino, A., Araki, N. and Mihara, Y., 1994, “Combustion of artificial graphite in stagnation flow: Estimation of global kinetic parameters from experimental results”, Combust. Flame 96, pp. 261-274.

46. Bradley, D., Dixon-Lewis, G., Habik, S.E. and Mushi, E.M.J., 1984, “The Oxidation of Graphite Powder in Flame Reaction Zones”, Proc. Combust. Inst. 20, pp. 931-940.

47. Frenklach, M., Wang, H., 1994, “Detailed Mechanism and Modeling of Soot Particle Formation”, ed. H. Bockhorn, Springer-Verlag Berlin, Springer Series in Chemical Physics, 59, p.165.

48. Konnov, A.A. 2000 “Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons”, Proc. Combust. Inst. 28, Abstr. Symp. Pap. p. 317.

49. Slavinskaya, N.A., Frank, P., 2009, “A Modeling Study of Aromatic Soot Precursors in Laminar Methane and Ethene Flames”, Combust. Flame 156 pp. 1705-1722.

50. You, X. F., Gorokhovski, M. A., Chinnayya, A., Chtab, A., Cen, K. F., 2007, “Experimental study and global model of PAH formation from coal combustion”, Journal of the Energy Institute 80(1), pp. 12-23.

51. Ranzi E., Cuoci A., Faravelli T., Frassoldati A., Migliavacca G., Pierucci S., Sommariva S., “Chemical Kinetics of Biomass Pyrolysis”, 2008, Energy Fuels, 22, pp. 4292-300.

52. T. Faravelli, A. Frassoldati, G. Migliavacca, E. Ranzi, “Detailed kinetic modeling of the thermal degradation of lignins”, 2010, Biomass and bioenergy 34, pp. 290-301.

53. Sommariva S., Maffei T., Migliavacca G., Faravelli T., Ranzi E., “A predictive multi-step kinetic model of coal devolatilization”, 2010, Fuel 89, pp. 318-328.

54. Bugaenko, L.T., Kuzmin, M.G., Polak, L.S., 1993, “High – Energy Chemistry”, Book craft Ltd, Midsomer Norton, Avon, UK, pp. 404.

55. Polak, L.S., Lebedev, Yu.A. et al., 1998, "Plasma Chemestry", Cambridge International Science Publishing,
pp. 390.

56. Fridman, A., Chirokov, A., Gutsol, A., 2005, “Non-thermal atmospheric pressure discharges”, J. Phys. D: Appl. Phys., 38, R1-R24.

57. Starikovskaia, S. M., 2006, “Plasma assisted ignition and combustion”, J. Phys. D: Appl. Phys. 39 , R265-R299.

58. Gleizes, A., Gonzalez J.J., Freton, P., 2005, “Thermal plasma modeling”, J. Phys. D: Appl. Phys. 38, R153–R183.

59. Fridman, A., 2008, “Plasma Chemistry”, Cambridge University Press, New York.

60. Starikovskaia, S. M., Anikin, N. B., Pancheshnyi, S. V., Zatsepin, D. V., Starikovskii, A. Yu., 2001, “Pulsed breakdown at high over voltage: development, propagation and energy branching. Plasma Sources”, Sci. Technol. 10, pp. 344-355.

61. Bozhenkov, S.A., Starikovskaia, S.M., Starikovskii, A.Yu, 2003, “Nanosecond gas discharge ignition of H2- and CH4-containing mixtures”, Combust. Flame 133, pp. 133-146.

62. Babu, B.V., 2007, “Chemical kinetics and dynamics of plasma assisted pyrolysis of assorted, non nuclear waste”. Proceedings of One day discussion meeting on “New Research directions in the use of power beams for environmental applications (RPDM-PBEA-2007)”, Laser & Plasma Technology Division, Bhabha Atomic Research Centre (BARC), Mumbai, September 18.

63. Stariskovskaia, S.M., Starikovskii, A.Yu., Zatsepin, D.V., 2001, “Hydrogen oxidation in stoechiometric hydrogen-air mixture in the fast ionization wave”, Combustion Theory and Modelling 5(1), pp. 97-129.

64. Hiroshi, N., Masaki, I., Tanaka, M. et al., 2004, “A treatment of carbonaceous wastes using thermal plasma with steam”, Vacuum 73, pp. 589-593.

65. Karpenko, E.I., Messerle, V.E., Ustimenko, A.B., 2007, “Plasma-aided solid fuel combustion”, Proc. Combust. Inst. 31, pp. 3353-3360.

66. Lavrichshev, O.A., Messerle, V.E., Osadchaya, E.F., Ustimenko, A.B., 2008, ”Plasma gasification of coal and petrocoke”, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June, 2008, ECA Vol.32D, O-2.018.

67. Qiu, J., He, X., Sun, T., Zhao, Z., Zhou, Y., Guo, S., Zhang, J., Ma, T., 2004, “Coal gasification in steam and air medium under plasma conditions: a preliminary study”, Fuel Proc. Technol. 85, pp. 969-982.

68. Chakravartty, S.C., Dutta, D., Lahiri, A., 1975, “Reaction of coals under plasma conditions: direct production of acethylene from coal”, Fuel 55, pp. 43-46.

69. Baumann, H., Bittner, D., Beiers, H.-G., Klein, J., Jüntgen, H., 1988, “Pyrolisys of coal in hydrogen and helium plasma“, Fuel 67, pp. 1120-1123.

70. Bittner, D., Wanzl, W., 1990, “The significance of coal properties for acethylene formation in a hydrogen plasma”, Fuel Proc. Technol. 24, pp. 311-316.

71. Plotsczuk, W.W., Resztak, A., Szymañski, A., 1995, “Plasma processing of brown coal”, Int. J. of Materials and Product Technology 10(3-6), pp. 530-540.

72. Cathey, C., Cain, J., Wang, H., Gundersen, M.A., Carter, C., Ryan, M., 2008, “OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane–air mixtures”, Combust. Flame 154,
pp. 715-727.

73. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., Starikovskii, A.Yu., 2008, “Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures”, Combust. Flame 154, pp. 569-586.

74. Deminsky, M., Jivotov, V., Potapkin, B., Rusanov, V., 2002, “Plasma-assisted production of hydrogen from hydrocarbons”, Pure Appl. Chem.74(3), pp. 413-418.

75. Deminsky, M., 2009, “Plasma chemical mechanism understanding via partial modeling”, invited lecture, ISPC-19, Bochum, Germany.

76. Starikovskii, A.Yu., Anikin, N. B., Kosarev, I. N., Mintoussov, E. I., Starikovskaia, S. M., Zhukov, V. P., 2006, “Plasma-assisted combustion”, Pure Appl. Chem. 78(6), pp. 1265-1298.

77. Andari, J.AI., Diamy, A.M., Legrand, J.C., Ben-Aim R.I., 1993, “Air Microwave-Induced Plasma: Relation between Ion Density and Atomic Oxygen Density”, Plasma Chemistry and Plasma Processing 13(1), pp. 103-116.

78. Petersen, E.L., Davidson, D.F., Hanson, R.K., 1999, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures”, Combust. Flame 117, pp. 272-290.

79. Frenklach, M., Wang, H., Goldenberg, M., Smith, G.P., Golden, D.M., Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V., in: GRI, Topical Report No. GRI-95/0058, 1995.

Downloads

Published

2013-01-15

How to Cite

Slavinskaya, N. A., Riedel, U., Messerle, V. E., & Ustimenko, A. B. (2013). Chemical Kinetic Modeling in Coal Gasification Processes: an Overview. Eurasian Chemico-Technological Journal, 15(1), 1–18. https://doi.org/10.18321/ectj134

Issue

Section

Articles