Fuel-Rich Premixed n-Heptane/Toluene Flame: a Molecular Beam Mass Spectrometry and Chemical Kinetic Study
DOI:
https://doi.org/10.18321/ectj185Keywords:
formation of soot precursors, chemical kinetic mechanism, n-heptane, toluene, molecular-beam, mass spectrometryAbstract
The mole fraction profiles of major flame species and intermediates including PAH precursors are measured in an atmospheric premixed burner-stabilized fuel-rich (φ = 1.75) n-heptane/toluene/O2/Ar flame (n-heptane/toluene ratio is 7:3 by liquid volume). These data are simulated with a detailed, extensively validated chemical kinetic reaction mechanism for combustion of n-heptane/toluene mixture, involving the reactions of PAH formation. The mechanism is extended with cross reactions for n-heptane and toluene derivatives. A satisfactory agreement between the new experimental data on the structure of n-heptane/toluene flame and the numerical simulations is observed. The mechanism reported can be successfully used in the models of practical fuel surrogates for reproducing the formation of soot precursors. The analysis of the reaction pathways shows that in the flame of the n-heptane/toluene blend (7:3 liquid volume ratio) the reactions dominant for the formation of the first aromatic ring (benzene and phenyl) are as those typical for pure toluene flames. The discrepancies between the measured and calculated species mole fractions are detected as well. The steps for the mechanism improvements are determined on the basis of the sensitivity analysis performed. To our knowledge, the measurements of mole fraction profiles of PAH and intermediates reported here, are the first of its kind and represent an unique data set extremely important for validation of chemical kinetic mechanisms for combustion of practical fuels.
References
[2]. N.A. Slavinskaya, U.Riedel, E.Saibov, K. Kannaiyan, AIAA-2012-0977, 50th Aerospace Science Meeting & Exhibit, Nashville, TN, USA, 2012.
[3]. H.F. Calcote, D.M. Manos, Combust. Flame 49 (1-3) (1983) 289–304.
[4]. M. Frenklach, H. Wang, in: H. Bockhorn (Ed.), Detailed Mechanism and Modeling of soot particle formation, Springer-Verlag Berlin, Springer Series in Chemical Physics, 1994, Vol. 59, p. 165.
[5]. H. Richter, J.B. Howard, Prog. Energy Comb. Sci. 26 (4-6) (2000) 565-608.
[6]. M. Frenklach, Phys. Chem. Chem. Phys. 4 (11) (2002) 2028–2037.
[7]. P. Dagaut, M. Cathonnet, Prog. Energy Comb. Sci. 32 (1) (2006) 48–92.
[8]. S. Dooley, S.H. Wona, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.-J. Sung, H. Wang, M.A. Oehlschlaeger, V. Iyer, S. Iyer, T.A. Litzinger, R.J. Santoro, T. Malewicki, K. Brezinsky, Combust. Flame 159 (4) (2012) 1444–1466.
[9]. C.V. Naik, A.M. Dean, Combust. Flame 145 (1-2) (2006) 16–37.
[10]. J.T. Farrell, N.P. Cernansky, F.L. Dryer, D.G. Friend, C.A. Hergart, C.K. Law, R.M. McDavid, C.J. Mueller, A.K. Patel, H. Pitsch, SAE Paper, 2007-01-0201, 2007.
[11]. G.T. Kalghatgi, SAE Paper 2005-01-0239, 2005.
[12]. J.C.G. Andrae, D. Johansson, P. Björnbom, P. Risberg, G. Kalghatgi, Combust. Flame 140 (4) (2005) 267-286.
[13]. G.L. Agafonov, I. Naydenova, P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 31 (2007) 575–583.
[14]. R. Di Sante, Combust. Flame 159 (1) (2012) 55–63.
[15]. G. Vanhove, G. Petit, R. Minetti, Combust. Flame 145 (3) (2006) 52–532.
[16]. Y. Sakai, A. Miyoshi, M. Koshi, W.J. Pitz, Proc. Combus. Inst. 32 (2009) 411–418.
[17]. N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi, S.M. Senkan, Comb. Sci. and Tech. 116-117 (1-6) (1996) 211–287.
[18]. J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (1-2) (2000) 122–136.
[19]. N.A. Slavinskaya, U. Riedel, S.B. Dworkin, Q. Zhang, M.J. Thomson, Combust. Flame 159 (3) (2012) 979–995.
[20]. N.A. Slavinskaya, P. Frank, Combust. Flame 156 (9) (2009) 1705–1722.
[21]. H. Xu, C. Yao, G. Xu, Z. Wang, H. Jin, Combust. Flame 160 (8) (2013) 1333–1344.
[22]. N.A. Slavinskaya, B. Noll, Proceedings of GT2006ASME Turbo Expo 2006, GT2006-90958, Barcelona, Spain, 2006.
[23]. E.T. Denisov, O.M. Sarkisov, G.I. Likhtenshtein, Chemical Kinetics: Fundamentals and Recent Developments,
Elsevier Science, New York, NY, USA, 2003.
[24]. S.G. Davis, C.K. Law, Combust. Sci. and Tech. 140 (1-6) (1998) 427–449.
[25]. S. Heimel, R.C. Weast, Proc. Combust. Inst. 6 (1) (1956) 296–302.
[26]. S.G. Davis, C.K. Law, Proc. Combust. Inst. 27 (1) (1998) 521–527.
[27]. O.C. Kwon, M.I. Hassan, G.M. Faeth, J. Prop. Power 16 (3) (2000) 513–522.
[28]. Y. Huang, C.J. Sung, J.A. Eng, Combust. Flame, 139 (3) (2004) 239–251.
[29]. M. Hartmann, I. Gushterova, M. Fikri, C. Schulz, R. Schießl, U. Maas, Combust. Flame 158 (1) (2011) 172–178.
[30]. F. Inal, S.M. Senkan, Combust. Flame 131 (1-2) (2002) 16–28.
[31]. M. Tsurikov, K.P. Geigle, V. Krüger et al, Combust. Sci. and Tech. 177 (10) (2005) 1835–1862.
[32]. R.J. Kee, F.M. Rupley, J.A. Miller, Onedimensional premixed laminar flame code, CHEMKIN-II Version 2.5b, 1992.
[33]. A.E. Lutz, R.J. Kee, J.A. Miller, SENKIN: a FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, Report No. SAND87-8248, Sandia National Laborotories, 1994.
[34]. M. Frenklach, H. Wang, in: H. Bockhorn (Ed.), Detailed Mechanism and Modeling of soot particle formation, Springer-Verlag, Berlin, Springer Series in Chemical Physics, 1994, p. 165.
[35]. O.P. Korobeinichev, S.B. Ilyin, V.V. Mokrushin, A.G. Shmakov, Combust. Sci. Technol. 116-117 (1-6) (1996) 51–67.
[36]. I.E. Gerasimov, D.A. Knyazkov, S.A. Yakimov, T.A. Bolshova, A.G. Shmakov, O.P. Korobeinichev, Combust. Flame 159 (5) (2012) 1840–1850.
[37]. T.A. Cool, K. Nakajima, K.A. Taatjes, A. McIlroy, P.R. Westmoreland, M.E. Law, A. Morel, Proc. Combust. Inst. 30 (2005) 1681–1688.
[38]. Y.-K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone, J. Chang, J.S. Coursey, R.A. Dragoset, A.R. Kishore, K.J. Olsen, A.M. Sansonetti, G.G. Wiersma, D.S. Zucker, M.A. Zucker, http://physics.nist.gov/PhysRefData/
Ionization.
[39]. W.L. Fitch, A.D. Sauter, Anal. Chem. 55 (6) (1983) 832–835.
[40]. W.E. Kaskan, Proc. Combust. Inst. 6 (1957) 134–141.
[41]. C.R. Shaddix, Correcting thermocouple measurements for radiation loss: a critical review, Proceedings of the 33rd National Heat Transfer Conference, HTD99-282, Albuquerque, New Mexico, 1999.
[42]. A.G. Shmakov, O.P. Korobeinichev, I.V. Rybitskaya, A.A. Chernov, D.A. Knyazkov, T.A. Bolshova, A.A. Konnov, Combust. Flame 157 (3) (2010) 556–565.
[43]. O.P. Korobeinichev, A.G. Tereshchenko, I.D. Emel’yanov, A.L. Rudnitskii, S.Y. Fedorov, L.V. Kuibida, V.V. Lotov, Combust. Explo. Shock Waves 21 (5) (1985) 524–530.
[44]. D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34 (3) (2005) 757.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.