Fuel-Rich Premixed n-Heptane/Toluene Flame: a Molecular Beam Mass Spectrometry and Chemical Kinetic Study

Authors

  • D. A. Knyazkov Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
  • N. A. Slavinskaya German Aerospace Centre (DLR), Institute of Combustion Technology, Stuttgart, Germany
  • A. M. Dmitriev Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
  • A. G. Shmakov Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
  • O. P. Korobeinichev Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
  • U. Riedel German Aerospace Centre (DLR), Institute of Combustion Technology, Stuttgart, Germany

DOI:

https://doi.org/10.18321/ectj185

Keywords:

formation of soot precursors, chemical kinetic mechanism, n-heptane, toluene, molecular-beam, mass spectrometry

Abstract

The mole fraction profiles of major flame species and intermediates including PAH precursors are measured in an atmospheric premixed burner-stabilized fuel-rich (φ = 1.75) n-heptane/toluene/O2/Ar flame (n-heptane/toluene ratio is 7:3 by liquid volume). These data are simulated with a detailed, extensively validated chemical kinetic reaction mechanism for combustion of n-heptane/toluene mixture, involving the reactions of PAH formation. The mechanism is extended with cross reactions for n-heptane and toluene derivatives. A satisfactory agreement between the new experimental data on the structure of n-heptane/toluene flame and the numerical simulations is observed. The mechanism reported can be successfully used in the models of practical fuel surrogates for reproducing the formation of soot precursors. The analysis of the reaction pathways shows that in the flame of the n-heptane/toluene blend (7:3 liquid volume ratio) the reactions dominant for the formation of the first aromatic ring (benzene and phenyl) are as those typical for pure toluene flames. The discrepancies between the measured and calculated species mole fractions are detected as well. The steps for the mechanism improvements are determined on the basis of the sensitivity analysis performed. To our knowledge, the measurements of mole fraction profiles of PAH and intermediates reported here, are the first of its kind and represent an unique data set extremely important for validation of chemical kinetic mechanisms for combustion of practical fuels.

References

[1]. W.J. Pitz, C.J. Mueller, Prog. Energy Comb. Sci. 37 (3) (2011) 330–350.

[2]. N.A. Slavinskaya, U.Riedel, E.Saibov, K. Kannaiyan, AIAA-2012-0977, 50th Aerospace Science Meeting & Exhibit, Nashville, TN, USA, 2012.

[3]. H.F. Calcote, D.M. Manos, Combust. Flame 49 (1-3) (1983) 289–304.

[4]. M. Frenklach, H. Wang, in: H. Bockhorn (Ed.), Detailed Mechanism and Modeling of soot particle formation, Springer-Verlag Berlin, Springer Series in Chemical Physics, 1994, Vol. 59, p. 165.

[5]. H. Richter, J.B. Howard, Prog. Energy Comb. Sci. 26 (4-6) (2000) 565-608.

[6]. M. Frenklach, Phys. Chem. Chem. Phys. 4 (11) (2002) 2028–2037.

[7]. P. Dagaut, M. Cathonnet, Prog. Energy Comb. Sci. 32 (1) (2006) 48–92.

[8]. S. Dooley, S.H. Wona, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.-J. Sung, H. Wang, M.A. Oehlschlaeger, V. Iyer, S. Iyer, T.A. Litzinger, R.J. Santoro, T. Malewicki, K. Brezinsky, Combust. Flame 159 (4) (2012) 1444–1466.

[9]. C.V. Naik, A.M. Dean, Combust. Flame 145 (1-2) (2006) 16–37.

[10]. J.T. Farrell, N.P. Cernansky, F.L. Dryer, D.G. Friend, C.A. Hergart, C.K. Law, R.M. McDavid, C.J. Mueller, A.K. Patel, H. Pitsch, SAE Paper, 2007-01-0201, 2007.

[11]. G.T. Kalghatgi, SAE Paper 2005-01-0239, 2005.

[12]. J.C.G. Andrae, D. Johansson, P. Björnbom, P. Risberg, G. Kalghatgi, Combust. Flame 140 (4) (2005) 267-286.

[13]. G.L. Agafonov, I. Naydenova, P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 31 (2007) 575–583.

[14]. R. Di Sante, Combust. Flame 159 (1) (2012) 55–63.

[15]. G. Vanhove, G. Petit, R. Minetti, Combust. Flame 145 (3) (2006) 52–532.

[16]. Y. Sakai, A. Miyoshi, M. Koshi, W.J. Pitz, Proc. Combus. Inst. 32 (2009) 411–418.

[17]. N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi, S.M. Senkan, Comb. Sci. and Tech. 116-117 (1-6) (1996) 211–287.

[18]. J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (1-2) (2000) 122–136.

[19]. N.A. Slavinskaya, U. Riedel, S.B. Dworkin, Q. Zhang, M.J. Thomson, Combust. Flame 159 (3) (2012) 979–995.

[20]. N.A. Slavinskaya, P. Frank, Combust. Flame 156 (9) (2009) 1705–1722.

[21]. H. Xu, C. Yao, G. Xu, Z. Wang, H. Jin, Combust. Flame 160 (8) (2013) 1333–1344.

[22]. N.A. Slavinskaya, B. Noll, Proceedings of GT2006ASME Turbo Expo 2006, GT2006-90958, Barcelona, Spain, 2006.

[23]. E.T. Denisov, O.M. Sarkisov, G.I. Likhtenshtein, Chemical Kinetics: Fundamentals and Recent Developments,
Elsevier Science, New York, NY, USA, 2003.

[24]. S.G. Davis, C.K. Law, Combust. Sci. and Tech. 140 (1-6) (1998) 427–449.

[25]. S. Heimel, R.C. Weast, Proc. Combust. Inst. 6 (1) (1956) 296–302.

[26]. S.G. Davis, C.K. Law, Proc. Combust. Inst. 27 (1) (1998) 521–527.

[27]. O.C. Kwon, M.I. Hassan, G.M. Faeth, J. Prop. Power 16 (3) (2000) 513–522.

[28]. Y. Huang, C.J. Sung, J.A. Eng, Combust. Flame, 139 (3) (2004) 239–251.

[29]. M. Hartmann, I. Gushterova, M. Fikri, C. Schulz, R. Schießl, U. Maas, Combust. Flame 158 (1) (2011) 172–178.

[30]. F. Inal, S.M. Senkan, Combust. Flame 131 (1-2) (2002) 16–28.

[31]. M. Tsurikov, K.P. Geigle, V. Krüger et al, Combust. Sci. and Tech. 177 (10) (2005) 1835–1862.

[32]. R.J. Kee, F.M. Rupley, J.A. Miller, Onedimensional premixed laminar flame code, CHEMKIN-II Version 2.5b, 1992.

[33]. A.E. Lutz, R.J. Kee, J.A. Miller, SENKIN: a FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, Report No. SAND87-8248, Sandia National Laborotories, 1994.

[34]. M. Frenklach, H. Wang, in: H. Bockhorn (Ed.), Detailed Mechanism and Modeling of soot particle formation, Springer-Verlag, Berlin, Springer Series in Chemical Physics, 1994, p. 165.

[35]. O.P. Korobeinichev, S.B. Ilyin, V.V. Mokrushin, A.G. Shmakov, Combust. Sci. Technol. 116-117 (1-6) (1996) 51–67.

[36]. I.E. Gerasimov, D.A. Knyazkov, S.A. Yakimov, T.A. Bolshova, A.G. Shmakov, O.P. Korobeinichev, Combust. Flame 159 (5) (2012) 1840–1850.

[37]. T.A. Cool, K. Nakajima, K.A. Taatjes, A. McIlroy, P.R. Westmoreland, M.E. Law, A. Morel, Proc. Combust. Inst. 30 (2005) 1681–1688.


[38]. Y.-K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone, J. Chang, J.S. Coursey, R.A. Dragoset, A.R. Kishore, K.J. Olsen, A.M. Sansonetti, G.G. Wiersma, D.S. Zucker, M.A. Zucker, http://physics.nist.gov/PhysRefData/
Ionization.

[39]. W.L. Fitch, A.D. Sauter, Anal. Chem. 55 (6) (1983) 832–835.

[40]. W.E. Kaskan, Proc. Combust. Inst. 6 (1957) 134–141.

[41]. C.R. Shaddix, Correcting thermocouple measurements for radiation loss: a critical review, Proceedings of the 33rd National Heat Transfer Conference, HTD99-282, Albuquerque, New Mexico, 1999.

[42]. A.G. Shmakov, O.P. Korobeinichev, I.V. Rybitskaya, A.A. Chernov, D.A. Knyazkov, T.A. Bolshova, A.A. Konnov, Combust. Flame 157 (3) (2010) 556–565.

[43]. O.P. Korobeinichev, A.G. Tereshchenko, I.D. Emel’yanov, A.L. Rudnitskii, S.Y. Fedorov, L.V. Kuibida, V.V. Lotov, Combust. Explo. Shock Waves 21 (5) (1985) 524–530.

[44]. D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34 (3) (2005) 757.

Downloads

Published

2014-09-30

How to Cite

Knyazkov, D. A., Slavinskaya, N. A., Dmitriev, A. M., Shmakov, A. G., Korobeinichev, O. P., & Riedel, U. (2014). Fuel-Rich Premixed n-Heptane/Toluene Flame: a Molecular Beam Mass Spectrometry and Chemical Kinetic Study. Eurasian Chemico-Technological Journal, 16(2-3), 219–226. https://doi.org/10.18321/ectj185

Issue

Section

Articles