Activated Carbons from Co-Mingled Liquid

Authors

  • A. Lyubchyk Universidade Nova de Lisboa, Faculdade CiГЄncia e Tecnologia, Quinta de Torre, 2829-516, Caparica, Portugal
  • O. Lygina Universidade Nova de Lisboa, Faculdade CiГЄncia e Tecnologia, Quinta de Torre, 2829-516, Caparica, Portugal
  • S. Lyubchyk Instituto Superior Tecnico, Lisbon Technical University, Av. Rovisco Pais, Lisbon, 1049-001 Lisbon, Portugal
  • I. Fonseca Universidade Nova de Lisboa, Faculdade CiГЄncia e Tecnologia, Quinta de Torre, 2829-516, Caparica, Portugal
  • M. Tulepov Al-Farabi Kazakh National University, 050040 al-Farabi av. 71, Almaty, Kazakhstan
  • Z. Mansurov Al-Farabi Kazakh National University, 050040 al-Farabi av. 71, Almaty, Kazakhstan
  • S. Lyubchyk Universidade Nova de Lisboa, Faculdade Ciência e Tecnologia, Quinta de Torre, 2829-516, Caparica, Portugal

DOI:

https://doi.org/10.18321/ectj339

Abstract

Data on a synergetic phenomena of the components of the co-mingled solid and liquid wastes occurs during their thermolysis were used for the development of the co-activation approach to wastes recycling. Co-activation was aimed at generation of porous solid valuable secondary products (activated carbons). The development of the design parameters for the activated carbons syntheses was done at valorization of the re-polymerization, re-association and the polycondensation reactions between the reference structural fragments of the components in the ternary composite systems "Spent Petroleum Product Waste – Biomass – D-grade coal" and "Coal Processing Sludge – Biomass – D-grade coal". From elaborated comprehensive
investigations the main factors, which influence the carbonized chars formation and the properties of the resulted activated carbons were evaluated. The porous solid secondary products of uniform particle size and pore size distribution were obtained during co-processing in the co-mingled systems. The surface area is ranged between 600-1100 m2/g, the total pore volume is of 0.32-0.47 m3/g and the yield is of 21-27%. Additionally, an efficiency of the catalytic co-processing of natural organic solid and liquid wastes with coal in a presence of the K/Na carbonates was studied aiming at novel adsorbents usage for wastewater purification from heavy metals.

References

[1]. www.bond.edu.au/about-bond/introducing-bond/sustainability/get-involved/waste-and-recycling/index.html.

[2]. Sustainability is an attitude, says new coordinator, UTSC. Retrieved 2007-10-09. http://webapps. utsc.utoronto.ca/ose/story.php?id=628.

[3]. G.P. Bespamjatnov, K.K. Botushevskaja and L.A. Zelensky, Thermal methods of neutralisation of a
waste, Moscow: Chemistry, 1975, p. 342.

[4]. E. Maksimov, Analytical Review, Municipal and Industrial Wastes: Neutralization and Utilization Processes. Ser. Ecology (1995) 52–76.

[5]. B.M. Ravich, V.P. Okladnikov and V.N. Lygach, Complex use of raw materials and a waste, Chemistry, Мoscow, 1988, p. 226.

[6]. H. Zhang, J. Zheng, R. Xiao, D. Shen, B. Jin, G. Xiao and R. Chen, RSC Advances 3 (2013) 5769–5774.

[7]. M.N. Siddiqui, M.F. Ali and H.H. Redhwi, Catalytic Conversion of Waste Plastics/Petroleum Resid Mixtures into Transportation Fuels, American Chemical Society, Division of Petroleum Chemestry, Boston, MA, 2002, p.374.

[8]. M.G. Zacheria, The Canadian Journal of Chemical Engineering 68 (2009) 519–522.

[9]. M. Steinberg and Y. Dong, Intern. J. of Power and Energy Systems 194 (2004) 194–199.

[10]. T. Cornelissen, J. Yperman, G. Reggers, S. Schreurs and R. Carleer, Fuel 87 (2008) 1031-1041.

[11]. M. Brebu, S. Ucar, C. Vasile and J. Yanik, Fuel 89 (2010) 1911–1918.

[12]. Qing Cao, Li'e Jin, Weiren Bao, Yongkang Lv, Fuel Process. Technol. 90 (2009) 337–342.

[13]. T. Cornelissen, M. Jans, J. Yperman, G. Reggers, S. Schreurs and R. Carleer, Fuel 87 (2008) 2523–2532.

[14]. Ke-Miao Lu, Wen-Jhy Lee, Wei-Hsin Chen, TaChang Lin, Applied Energy 105 (2013) 57–65.

[15]. V.I. Sharypov, N.G. Beregovtsova, B.N. Kuznetsov, S.V. Baryshnikov, V.L. Cebolla, J.V. Weber, S. Collura, G. Finqueneisel, T. Zimny, J. Anal. Appl. Pyrolysis 76 (2006) 265–270.

[16]. Li Zhang, Shaoping Xu, Wei Zhao, Shuqin Liu, Fuel 86 (2007) 353–359.

[17]. L. Zhou, Y. Wang, Q. Huang and J. Cai, Fuel Process. Technol. 87 (2006) 963–969.

[18]. H.S. Ding, H Jiang, Bioresour. Technol. 133 (2013) 16–22.

[19]. H. Haykiri-Acma, S. Yaman, Renewable Energy 35 (2010) 288–292.

[20]. W. Zhu, W. Song, W. Lin, Fuel Process. Technol. 89 (2008) 890–896.

[21]. F. Pinto, C. Franco, R.N. André, M. Miranda, I. Gulyurtlu, I. Cabrita, Fuel 81 (2002) 291–297.

[22]. F. Pinto, C. Franco, R.N. André, C. Tavares, M. Dias, I. Gulyurtlu, I. Cabrita, Fuel 82 (2003) 1967–1976.

[23]. K. Onsri, P. Prasassarakich, S. Ngamprasertsith, Energy and Power Engineering, 95 (2) (2010) 95–102.

[24]. J. Krasulina, H. Luik, V. Palu and H. Tamvelius, Oil Shale 29 (2012) 222–236.

[25]. K. Gimouhopoulos, D. Doulia, A. Vlyssides and D. Georgiou, Waste Management & Research 18 (2000) 352–357.

[26]. K. Kumabe, T. Hanaoka, Sh. Fujimoto, T. Minowa and K. Sakanishi, Fuel 86 (2007) 684–689.

[27]. N. Chueluecha and A. Duangchan, Co-pyrolysis of Biomass and Cattle Manure to Produce Upgraded Bio-oil, International Conference on Chemical, Environmental Science and Engineering, July 28-29, 2012, p. 21.

[28]. M. Luo and C.W. Curtis, Fuel Process. Technol. 49 (1996) 91–117.

[29]. V.I. Sharypov, N.G. Beregovtsova, B.N. Kuznetsov, S.V. Baryshnikov, V.L. Cebolla, J.V. Weber, S. Collura, G. Finqueneisel and T. Zimny, J. Anal. Appl. Pyrolysis 76 (2006) 265–270.

[30]. K. Nikkhah, N.N. Bakhshi and D.G. MacDonald, Energy from biomass and waste XVI, Institute of Gas Technology, Chicago, 1993, p. 857.

[31]. W. Zhu, W. Song and W. Lin, Fuel Process. Technol. 89 (2008) 890-896.

[32]. http://upload.wikimedia.org/wikipedia/commons/1/18/Waste_hierarchy.svg.

[33]. http://www.ecocycle.org/zero/pay_throw.cfm.

[34]. M. Lapuerta, J.J. Hernández, A. Pazo and J. López, Fuel Process. Technol. 89 (2008) 828–837.

[35]. L. Wang and P. Chen, Chem. Eng. Process. 43 (2004) 145–148.

[36]. N.T. Pohodenko, Reception and processing of oil coke, Moscow, Chemistry, 1986, p. 313.

[37]. E.S. Lygina, A.F. Dmitruk, L.Ya. Galushko, S. B. Lyubchik and V.F. Tret’yakov, Solid Fuel Chemistry 43 (2009) 177–192.

[38]. E.S. Lygina, A.F. Dmitruk, L.Ya. Galushko, S.B. Lyubchik and V.F. Tret’yakov, Solid Fuel Chemistry 3 (2009) 177–192.

[39]. E.M. Levin, C.R. Robbins and H.F. McMurdie, Phase diagrammes for ceram ist. – New York: Marcel Dekker, 1964, p. 398.

[40]. J. Sestak, Thermophysical properties of solids: measurements and theoretical thermal analysis, Prague: Academia, 1984, p. 168.

[41]. E.S. Lygina, A.F. Dmitruk, S.B. Lyubchik and V.F. Tret’yakov, Solid Fuel Chemistry 43 (2006) 247–266.

[42]. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37 (1999) 1379-1378.

[43]. H. Sontheimer, J.C. Crittenden and R.S. Summers, Activated carbon for water treatment. Karlsruhe:
DVGW Forschungsstelle Engler-Bunte Institut, 1988, p. 126.

[44]. H. Marsh,F.R. Reinoso, Activated Carbon, Elsevier Science, Great Britain, 2006, p. 554.

[45]. J.A. Moulijn and F. Kapteijn, Carbon gasification reaction, ed. H. March, F. Rodriguez Reinoso, Science of Carbon Materials, Alicante, 2000, p. 379.

Published

2015-01-20

How to Cite

Lyubchyk, A., Lygina, O., Lyubchyk, S., Fonseca, I., Tulepov, M., Mansurov, Z., & Lyubchyk, S. (2015). Activated Carbons from Co-Mingled Liquid. Eurasian Chemico-Technological Journal, 17(1), 47–65. https://doi.org/10.18321/ectj339

Issue

Section

Articles