To the Methodology of Phase Transition Temperature Determination in Aqueous Solutions of Thermo-Sensitive Polymers
DOI:
https://doi.org/10.18321/ectj960Keywords:
Thermo-sensitive polymers, Solution turbidity, Phase portrait, Copolymerization, Light scattering intensityAbstract
An advanced methodology of phase transition determination in aqueous solutions of thermo-sensitive polymers by using of the phase portraits method has been suggested. The methodology allows highly accurate determining the temperature when exactly a half of molecules loses solubility (from the maximum number that can go to another phase state under given conditions). It is shown that since phase transition passes usually in a wide enough temperature interval this indicator should be used as a quantitative parameter that characterizes phase transition process. Additionally the suggested methodology allows introducing one more quantitative parameter that reflects a sharpness of phase transition. The methodology is verified by an example of phase transitions study in aqueous solutions of thermo-sensitive copolymers based on N-vinylpyrrolidone and vinyl propyl ether.
References
(1). G.A. Mun, Z.S. Nurkeeva, B.B. Ermukhambetova, I.K. Nam, V.A. Kan, S.E. Kudaibergenov, Polym. Advan. Technol. 10 (1999) 151‒156. Crossref DOI: https://doi.org/10.1002/(SICI)1099-1581(199903)10:3<151::AID-PAT855>3.0.CO;2-I
(2). D. Christova, R. Velichkovaq, W. Loos, E.J. Goethals, F. Du Prez, Polymer 44 (2003) 2255‒2261. Crossref DOI: https://doi.org/10.1016/S0032-3861(03)00139-3
(3). V.V. Khutoryanskiy and T.K. Georgiou. Temperature-Responsive Polymers: Chemistry, Properties and Applications. 2018 John Wiley & Sons Ltd. Crossref DOI: https://doi.org/10.1002/9781119157830
(4). S.А. Dergunov, G.A. Mun, M.A. Dergunov, I.E. Suleimenov, E. Pinkhassik, React. Funct. Polym. 71 (2011) 1129‒1136. Crossref DOI: https://doi.org/10.1016/j.reactfunctpolym.2011.09.005
(5). I. Suleimenov, G. Mun, R. Ivlev, S. Panchenko, D. Kaldybekov, AASRI Procedia 3 (2012) 577‒582. Crossref DOI: https://doi.org/10.1016/j.aasri.2012.11.091
(6). I.E. Suleimenov, S.V. Panchenko, Z. Sedlakova, I.T. Park, Recent Contributions to Physics 55 (2015) 114‒120.
(7). T. Shibanuma, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, Y. Sakurai, T. Okano, Macromolecules 33 (2000) 444‒450. Crossref DOI: https://doi.org/10.1021/ma9915374
(8). Y. Maeda, T. Nakamura, I. Ikeda, Macromolecules 35 (2002) 217‒222. Crossref DOI: https://doi.org/10.1021/ma011034+
(9). S. Verbrugghe, A. Laukkanen, V. Aseyev, H. Tenhu, F.M. Winnik, F.E. Du Prez, Polymer 44 (2003) 6807‒6814. Crossref DOI: https://doi.org/10.1016/j.polymer.2003.07.003
(10). Y.H. Hsu, W.H. Chiang, M.C. Chen, C.S. Chern, H.C. Chiu, Langmuir 22 (2006) 6764‒6770. Crossref DOI: https://doi.org/10.1021/la060229d
(11). L. Shao, M. Hu, L. Chen, L. Xu, Y. Bi, React. Funct. Polym. 72 (2012) 407‒413. Crossref DOI: https://doi.org/10.1016/j.reactfunctpolym.2012.04.002
(12). K. Jong, B. Ju, Colloid Polym. Sci. 295 (2017) 307‒315. Crossref DOI: https://doi.org/10.1007/s00396-016-4009-1
(13). D.E. Zhunuspayev, G.A. Mun, V.V. Khutoryanskiy, Langmuir 26 (2010) 7590–7597. Crossref DOI: https://doi.org/10.1021/la904403k