Nickel Oxide Catalysts for Partial Oxidation of Methane to Synthesis Gas
DOI:
https://doi.org/10.18321/ectj389Keywords:
partial oxidation of methane, synthesis gas, supported nickel catalystsAbstract
Nickel catalysts supported on different carriers (θ-Al2O3, γ-Al2O3, HZSM-5 with γ-Al2O3, HZSM-5, and NaX) have been investigated for the partial oxidation of methane. All the supported nickel catalysts showed a high activity for the formation of synthesis gas, and γ-Al2O3 was the most effective among all the tested carriers.
The effect of the heat-treatment temperature of the 3 wt.% Ni/γ-Al2O3 catalyst on its catalytic activity was studied, and a considerable decrease in its activity was observed by the heat-treatment of the catalyst at 1000 °C compared with the catalysts prepared by the 300–800 °C – calcination. The XRD analysis suggested the formation of NiAl2O4 that is a non-reducible compound at the high calcination temperature. The addition of a modifier (Co, Ce, or La) to the 3 wt.% Ni/γ-Al2O3 catalyst increased the selectivity to H2 and CO with the decreasing selectivity to CO2, and the highest selectivity to H2 was obtained by the 5 wt.% NiLa/γ-Al2O3. The developed 5 wt.% NiLa/γ-Al2O3 catalyst showed a high stability for 30 h for the partial oxidation of methane at 750 °C. The methane conversion reached 95%, selectivity to hydrogen 83% and 52% to carbon monoxide.
References
[2]. K. Dossumov, G.Y. Yergazyieva, L.K. Myltykbayeva, U. Suyunbaev, N.A. Asanov, A.M.Gyulmaliev, Coke and Chemistry 58 (5) (2015)178–183.
[3]. K. Dossumov, L.K. Myltykbayeva, G.Y. Yergaziyeva, 12th European Congress on Catalysis – EuropaCat-XI, Kazan, Russia (2015) 1628–1629.
[4]. H. Nishimoto, K. Nakagawa, N. Ikenaga, M. Nishitani-G., T. Ando, T. Suziki, Appl. Catal. A: Gen. 264 (2004) 65–67.
[5]. A.P.E. York, T. Xiao, M.L.H. Green, Top. Catal. 22 (2003) 345–358.
[6]. B. Lemke, C. Roodhouse, N. Glumae, Н. Krier, Int. J. Hydrogen Energy 30 (2005) 893–902.
[7]. P. Frontera, A. Aloise, A. Macario, F. Crea, P.L. Antonucci, G. Giordano, J.B. Nagy, Res. Chem. Intermediat. 37 (2011) 267–279.
[8]. L.D. Vella, J.A. Villoria, S. Specchia, N. Mota, J.L.G. Fierro, V. Specchai, Catal. Today 171 (2011) 84–96.
[9]. B. Valle, B. Aramburu, A. Remiro, J. Bilbao, A.G. Gayubo, Appl. Catal. B: Environ. 147 (2014) 402–410.
[10]. L. Pelletier, D.S.D. Liu, Appl. Catal. A: Gen. 317 (2007) 293–298.
[11]. J. Hu, C. Yu, Y. Bi, L. Wei, J. Chen, X. Chen, Chinese J. Catal. 35 (2014) 8–20.
[12]. R.M. Navarro, M.A. Pena, J.L.G. Fierro, Chem. Rev. 107 (2007) 3952–3991.
[13]. I.H. Son, S.J. Lee, A. Soon, H.-S. Roh, H. Lee, Appl. Catal. B: Environ. 134–135 (2013) 103–109.
[14]. Y. Wang, J. Peng, C. Zhou, Z.-Y. Lim, C. Wu, S. Ye, W.G. Wang, Int. J. Hydrogen Energ. 39 (2014): 778–787 (2014).
[15]. K. Tao, L. Shi, Q. Ma, D. Wang, C. Zeng, C. Kong,M. Wu, L. Chen, S. Zhou, Y. Hu, Chem. Eng. J., 221 (2013) 25–31.
[16]. J. Ye, Z. Li, H. Duan, Y. Liu, J. Rare Earth 24 (2006) 302–308.
[17]. R. Liu, M. Yang, C. Huang, W. Weng, H. Wan, Chinese J. Catal. 34 (2013) 146–151.
[18]. V.D. Cesar, M.A.S. Baldanza, C.A. Henriqes, F. Pompeo, G. Santori, J. Múnera, E. Lombardo, M. Schmal, L. Cornaglia, N. Nichio, Int. J. Hydrogen Energ. 38 (2013) 5616–5626.
[19]. L. De Rogatis, T. Montini, A. Cognigni, L. Olivi, P. Fornasiero, Catal. Today 145 (2009) 176–185.
[20]. A.M. Venezia, V. La Parola, G. Pantaleo, P. Calatozzo, R. Bal, Proc. of 7th Tokyo Conf. Adv. Catal. Sci. & Technol. O-E07: 48 (2014).
[21]. T.Y. Kim, S.M. Kim, W.S. Lee, S.I. Woo, Int. J. Hydrogen Energy 38 (14) (2013) 6027–6032.