Structures and Antibacterial Properties of PLA-based Ciprofloxacin Composite Films Deposited by Low-Electron Beam Dispersion

  • Beibei Li International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • Chun He International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • Xiaohong Jiang International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • M. A. Yarmolenko International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • D. G. Piliptsou International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • A. A. Rogachev International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • A. V. Rogachev International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • Bin Du Department of Orthopaedic, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
Keywords: electron beam dispersion, PLA-based ciprofloxacin films, antibacterial activity, thermal treatment

Abstract

 Polylactic acid (PLA)-based ciprofloxacin (Cip) antibacterial films with mass ratio PLA:Cip=1:1 were prepared by low-electron beam dispersion (EBD). The molecular structure, chemical composition and morphology of PLA-based ciprofloxacin antibacterial films were investigated by XPS, FTIR, liquid NMR and SEM. The antibacterial activity of composite films was tested against E. coli ATCC 25922 and S. aureus ATCC 12600 using the agar diffusion method on the solid LB agar medium. XPS and FTIR analysis showed the presence of an antibacterial ingredient in the composite films. Using NMR, it has been shown that the molecular structure of a monolayer of ciprofloxacin is fully consistent with the molecular structure of the initial ciprofloxacin powders. High antibacterial activity of the composite films has been also established and the layers still possess antibacterial activity with regard to S. aureus even after 7 days of leaching in an isotonic solution. The thermal treatment indicates that the composite films can withstand temperatures of 180 °C and keep its structure unchanged.

References

(1). Y.K. Wu, N.C. Cheng, C.M. Cheng, Trends Biotechnol. 37 (2019) 505‒517. Crossref

(2). Y. Qu, D.C. McGiffin, C.E. Kure, B. Ozcelik, H. Thissen, J. Fraser, A.Y. Peleg, J. Heart Lung Transpl. 37 (2019) 134. Crossref

(3). K. Ivanova, A. Bassegoda, T. Tzanov, Antibacterial coatings on medical devices. In: A. Tiwari, (ed.) Handbook of Antimicrobial Coatings. New York: Elsevier, 2018, pp. 487–507. Crossref

(4). Lin Xiao, Bo Wang, Guang Yang, Mario Gauthier, Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. Biomedical Science, Engineering and Technology, Dhanjoo N. Ghista, IntechOpen, (2012) 247‒282. Crossref

(5). H. Arakawa, Y. Shirasaka, M. Haga, T. Nakanishi, I. Tamai, Biopharm. Drug Dispos. 33 (2012) 332‒341. Crossref

(6). S.A. Al-Trawneh, J.A. Zahra, M.R. Kamal, M.M. El-Abadelah, F. Zani, M. Incerti, A. Cavazzoni, R.R. Alfieri, P.G. Petronini, P. Vicini, Bioorg. Med. Chem. 18 (2010) 5873‒5884. Crossref

(7). N. Blanchemain, Y. Karrout, N. Tabary, M. Bria, C. Neut, H.F. Hildebrand, J. Siepmann, B. Martel, Carbohydr. Polym. 90 (2012) 1695‒1703. Crossref

(8). U.A. Shinde, M.S Nagarsenker, Indian J. Pharm. Sci. 71 (2009) 313‒317. Crossref

(9). U.K. Chhalotiya, K.K. Bhatt, D.A. Shah, S.L. Baldania, Sci. Pharm. 78 (2010) 857‒868. Crossref

(10). P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173‒1182. Crossref

(11). J.T. Wolan, G.B. Hoflund, Appl. Surf. Sci. 125 (1998) 251‒258. Crossref

(12). Chen Qi, A.V. Rogachev, D.V. Tapal’skii, M.A. Yarmolenko, A.A. Rogachev, X. Jiang, E.V. Koshanskaya, A.S. Vorontsov, Surf. Coat. Technol. 315 (2017) 350‒358. Crossref

(13). J.G. Sun, A.V. Rogachev, M.A. Yarmolenko, A.A. Rogachev, X. Jiang, D.V. Tapal’skii, D.L. Gorbachev, A.A. Bespal’ko, RSC Adv. 6 (2016) 29220‒29228. Crossref

(14). T.V. Reshetenko, L.B. Avdeeva, A.A. Khassin, G.N. Kustova, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, D.I. Kochubey, Yu.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Appl. Catal. A‒Gen. 268 (2004) 127‒138. Crossref

(15). K. Otsuka, S. Takenaka, H. Ohtsuki, Appl. Catal. A‒Gen. 273 (2004) 113‒124. Crossref

(16). S. Takenaka, Y. Tomikubo, E. Kato, K. Otsuka, Fuel 83 (2004) 47‒57. Crossref

(17). D. Chen, K.O. Christensen, E.O. Fernandez, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229 (2005) 82‒96. Crossref

(18). C. He, A.V. Rogachev, B. Li, V.A. Yarmolenko, A.A. Rogachev, D.V. Tapal’skii, X. Jiang, D. Sun, M.A. Yarmolenko, Surf. Coat. Tech. 354 (2018) 38‒45. Crossref

(19). C. He, Q. Chen, M.A. Yarmolenko, A.A. Rogachev, D.G. Piliptsou, X. Jiang, A.V. Rogachev, Prog. Org. Coat. 123 (2018) 282‒291. Crossref

(20). L.J. Bellamy, The Infra-red Spectra of Complex Molecules. Methuen, London (1954) 323 p.

(21). C.A. Rodrigues, A. Tofanello, I.L. Nantes, D.S. Rosa, ACS Sustain. Chem. Eng. 3 (2015) 2756‒2766. Crossref

(22). D. Doganay, S. Coskun, C. Kaynak, H.E. Unalan, Compos. Part B‒Eng. 99 (2016) 288‒296. Crossref

(23). Yu Fei, Youg Li, Sheng Han, Jie Ma, J. Colloid Interf. Sci. 484 (2016) 196‒204. Crossref

(24). S. Park, S. Jung, J. Heo, J. Hong, J. Ind. Eng. Chem. 77 (2019) 97‒104. Crossref

Published
2020-03-26
How to Cite
[1]
B. Li, “Structures and Antibacterial Properties of PLA-based Ciprofloxacin Composite Films Deposited by Low-Electron Beam Dispersion”, Eurasian Chem. Tech. J., vol. 22, no. 1, pp. 35-42, Mar. 2020.
Section
Articles