Study on the Rapid Preparation of Zinc Oxide Nanotubes by Galvanostatic Etching
DOI:
https://doi.org/10.18321/ectj1128Keywords:
ZnO nanotubes, galvanostatic etching, light absorption capacity, fluorescence properties, dopamine testAbstract
At present, most of the methods for preparing ZnO nanotubes are chemical etching of ZnO nanorods, which is inefficient and takes a long time. In this paper, ZnO nanotubes were successfully prepared by galvanostatic etching. Nanotubes prepared by galvanostatic etching only took 1/6 of the time of chemical etching. The ZnO nanotubes obtained by two different methods were tested by XRD and SEM. It is found that the crystal structure and crystallinity of the ZnO nanotubes obtained by galvanostatic etching are unchanged, and the internal corrosion of the nanotubes by galvanostatic etching is more thorough and has a larger specific surface area. In the tests of UV-vis spectrophotometry, fluorescence spectra and electrochemical performance test, the optical properties and electrochemical performance of ZnO nanotubes obtained by galvanostatic etching are better than those obtained by chemical etching. Because the ZnO nanotubes obtained by galvanostatic etching have larger specific surface area, better optical properties and better electrochemical performance, they have a greater application prospect in sensors and ultraviolet light detectors.
References
(1). Y. Chen, D.M. Bagnall, H.J. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998) 3912‒3918. Crossref DOI: https://doi.org/10.1063/1.368595
(2). Z.C. Tu, X. Hu, Phys. Rev. B 74 (2006) 035434. Crossref DOI: https://doi.org/10.1103/PhysRevB.74.035434
(3). A. Kmita, B. Hutera, E. Olejnik, A. Janas. Effect of water glass modification with nanoparticles of zinc oxide on selected physical and chemical properties of binder and mechanical properties of sand mixture. Archives of Foundry Engineering 12 (2012) 37‒40.
(4). H. Yin, V.A. Coleman, P.S. Casey, B. Angel, H.J. Catchpoole, L. Waddington, M.J. McCall, J. Nanopart. Res. 17 (2015) 96. Crossref DOI: https://doi.org/10.1007/s11051-014-2851-y
(5). H.A. Depew, Rubber Chem. Technol. 14 (1971) 259‒272. Crossref DOI: https://doi.org/10.5254/1.3540016
(6). M. Ollinger, Nano-encapuslated of zinc sulfide:silver with indium tin oxide and aluminum doped zinc oxide for flat panel display applications. Thesis (Ph.D.) ‒ University of Florida, 2002. Publication Number: AAI3084028.
(7). N. Wolf, T. Stubhan, J. Manara, V. Dyakonova C.J. Brabecbc, Thin Solid Films 564 (2014) 213‒217. Crossref DOI: https://doi.org/10.1016/j.tsf.2014.06.008
(8). J. Deng, M. Wang, Z. Yang, J. Liu Z. Sun, X. Song, J. Power Sources 280 (2015) 555‒564. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2015.01.137
(9). R. Badry, A. Fahmy, A. Ibrahim, H. Elhaes, M. Ibrahim, Opt. Quant. Electron. 53 (2021) 39. Crossref DOI: https://doi.org/10.1007/s11082-020-02646-5
(10). R.C. Pawar, J.W. Lee, V.B. Patil, C.S. Lee, Sensor. Actuat. B-Chem. 187 (2013) 323‒330. Crossref DOI: https://doi.org/10.1016/j.snb.2012.11.100
(11). G. Ferblantier, F. Mailly, R.A. Asmar, A. Foucaran, F. Pascal-Delannoy, Sensor. Actuat. A-Phys. 122 (2005) 184‒188. Crossref DOI: https://doi.org/10.1016/j.sna.2005.04.009
(12). A. Wittmar, D. Gautam, C. Schilling, U. Dörfler, W. Mayer-Zaika, M. Winterer, M. Ulbricht, J. Nanopart. Res. 16 (2014) 2341. Crossref DOI: https://doi.org/10.1007/s11051-014-2341-2
(13). J. Nishino, Y. Nosaka, J. Cryst. Growth 268 (2004) 174‒177. Crossref DOI: https://doi.org/10.1016/j.jcrysgro.2004.05.006
(14). X.H. Wang, L.Q. Huang, L.J. Niu, R.B. Li, D.H.Fan, F.B. Zhang, Z.W. Chen, X. Wang, Q.X. Guo, J. Alloy. Compd. 622 (2015) 440‒445. Crossref DOI: https://doi.org/10.1016/j.jallcom.2014.10.077
(15). A. El Mragui, I. Daou, O. Zegaoui, Catal. Today 321‒322 (2018) 41‒51. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.01.016
(16). Y. Kokubun, H. Kimura, S. Nakagomi, Jpn. J. Appl. Phys. 42 (2003) L904‒L906. Crossref DOI: https://doi.org/10.1143/JJAP.42.L904
(17). T.S. Perundevi, A. Karthika, S. Ramalakshmi Mater. Today: Proc., 2021. Crossref DOI: https://doi.org/10.1016/j.matpr.2020.11.721
(18). M.H. Farooq, R. Hussain, M.Z. Iqbal, M.W. Shah, U.A. Rana, S.U-D. Khan, J. Nanosci. Nanotechno. 16 (2016) 898‒902. Crossref DOI: https://doi.org/10.1166/jnn.2016.10705
(19). R. Zakerian, S. Bahar, J. Sep. Sci. 40 (2017) 4439‒4445. Crossref DOI: https://doi.org/10.1002/jssc.201700799
(20). D. Dimova-Malnovska, P. Andreev, M. Sendova-Vassileva, H. Nichev, K. Starbova, Energy Procedia 2 (2010) 55‒58. Crossref DOI: https://doi.org/10.1016/j.egypro.2010.07.010
(21). H. Haga, M. Jinnai, S. Ogawa, T. Kuroda, Y. Kato, H. Ishizaki, Electr. Eng. Japan 140 (2021) 357‒363. Crossref DOI: https://doi.org/10.1541/ieejfms.140.357
(22). R. Sang, Y. Zhang, J. Shao, C. Yan, K. Zhao, J. Alloy. Compd. 777 (2019) 506‒513. Crossref DOI: https://doi.org/10.1016/j.jallcom.2018.10.407
(23). T. Wen, H. Tan, S. Chen, P. He, S. Yang, C. Deng, S. Liu, Electrochem. Commun. 128 (2021) 107073. Crossref DOI: https://doi.org/10.1016/j.elecom.2021.107073
(24). Y.-L. Xie, J. Yuan, P Song, S-Q. Hu, J. Mater. Sci: Mater. Electron. 26 (2015) 3868‒3873. Crossref DOI: https://doi.org/10.1007/s10854-015-2913-7
(25). J. Chen, Y. Jia, W. Wang, J. Fu, H. Shi, Y. Liang, Int. J. Hydrogen Energ. 45 (2020) 8649‒8658. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.01.114
(26). M. Yousefi, M. Amiri, R. Azimirad, A.Z. Moshfeghad, J. Electroanal. Chem. 661 (2011) 106‒112. Crossref DOI: https://doi.org/10.1016/j.jelechem.2011.07.022
(27). X. Gan, X. Li, X. Gao, W. Yu, J. Alloy. Compd. 481 (2009) 397‒401. Crossref DOI: https://doi.org/10.1016/j.jallcom.2009.03.013
(28). P.C. Pandey, A.K. Pandey, Electrochim. Acta 109 (2013) 536‒545. Crossref DOI: https://doi.org/10.1016/j.electacta.2013.07.142
(29). J.M. Monti, D. Monti, Sleep Med. Rev. 11 (2007) 113‒133. Crossref DOI: https://doi.org/10.1016/j.smrv.2006.08.003
(30). T.S. Tang, X. Chen, J. Liu, I. Bezprozvanny, J. Neurosci. 27 (2007) 7899‒7910. Crossref DOI: https://doi.org/10.1523/JNEUROSCI.1396-07.2007
(31). M.K. Lakshmana, T.R. Raju, Anal. Biochem. 246 (1997) 166‒170. Crossref DOI: https://doi.org/10.1006/abio.1996.9997
(32). O. Szerkus, J. Jacyna, P. Wiczling, A. Gibas, M. Sieczkowski, D. Siluk, M. Matuszewski, R. Kaliszana, M.J. Markuszewskia, J. Chromatogr. B 1029‒1030 (2016) 48‒59. Crossref DOI: https://doi.org/10.1016/j.jchromb.2016.06.051
(33). Y. Liu, X. Huang, J. Ren, Electrophoresis 37 (2016) 2‒18. Crossref DOI: https://doi.org/10.1002/elps.201500314
(34). J. Yang, Y. Lin, Y. Meng, Y. Liu, Ceram. Int. 38 (2012) 4555‒4559. Crossref DOI: https://doi.org/10.1016/j.ceramint.2012.02.033
(35). M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 3 (2010) 2643‒2667. Crossref DOI: https://doi.org/10.3390/ma3042643
(36). P.Y. Kuang, Y.Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, J. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 16387–16394. Crossref DOI: https://doi.org/10.1021/acsami.5b03527
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.