Study on the Rapid Preparation of Zinc Oxide Nanotubes by Galvanostatic Etching

  • Jingsong Sun Nanjing University of Science and Technology, 200, Xiaolingwei Str., Nanjing, China
  • Jinxing Cao Nanjing University of Science and Technology, 200, Xiaolingwei Str., Nanjing, China
  • Xiaohong Jiang Nanjing University of Science and Technology, 200, Xiaolingwei Str., Nanjing, China
Keywords: ZnO nanotubes, galvanostatic etching, light absorption capacity, fluorescence properties, dopamine test

Abstract

At present, most of the methods for preparing ZnO nanotubes are chemical etching of ZnO nanorods, which is inefficient and takes a long time. In this paper, ZnO nanotubes were successfully prepared by galvanostatic etching. Nanotubes prepared by galvanostatic etching only took 1/6 of the time of chemical etching. The ZnO nanotubes obtained by two different methods were tested by XRD and SEM. It is found that the crystal structure and crystallinity of the ZnO nanotubes obtained by galvanostatic etching are unchanged, and the internal corrosion of the nanotubes by galvanostatic etching is more thorough and has a larger specific surface area. In the tests of UV-vis spectrophotometry, fluorescence spectra and electrochemical performance test, the optical properties and electrochemical performance of ZnO nanotubes obtained by galvanostatic etching are better than those obtained by chemical etching. Because the ZnO nanotubes obtained by galvanostatic etching have larger specific surface area, better optical properties and better electrochemical performance, they have a greater application prospect in sensors and ultraviolet light detectors.

References

(1). Y. Chen, D.M. Bagnall, H.J. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998) 3912‒3918. Crossref

(2). Z.C. Tu, X. Hu, Phys. Rev. B 74 (2006) 035434. Crossref

(3). A. Kmita, B. Hutera, E. Olejnik, A. Janas. Effect of water glass modification with nanoparticles of zinc oxide on selected physical and chemical properties of binder and mechanical properties of sand mixture. Archives of Foundry Engineering 12 (2012) 37‒40.

(4). H. Yin, V.A. Coleman, P.S. Casey, B. Angel, H.J. Catchpoole, L. Waddington, M.J. McCall, J. Nanopart. Res. 17 (2015) 96. Crossref

(5). H.A. Depew, Rubber Chem. Technol. 14 (1971) 259‒272. Crossref

(6). M. Ollinger, Nano-encapuslated of zinc sulfide:silver with indium tin oxide and aluminum doped zinc oxide for flat panel display applications. Thesis (Ph.D.) ‒ University of Florida, 2002. Publication Number: AAI3084028.

(7). N. Wolf, T. Stubhan, J. Manara, V. Dyakonova C.J. Brabecbc, Thin Solid Films 564 (2014) 213‒217. Crossref

(8). J. Deng, M. Wang, Z. Yang, J. Liu Z. Sun, X. Song, J. Power Sources 280 (2015) 555‒564. Crossref

(9). R. Badry, A. Fahmy, A. Ibrahim, H. Elhaes, M. Ibrahim, Opt. Quant. Electron. 53 (2021) 39. Crossref

(10). R.C. Pawar, J.W. Lee, V.B. Patil, C.S. Lee, Sensor. Actuat. B-Chem. 187 (2013) 323‒330. Crossref

(11). G. Ferblantier, F. Mailly, R.A. Asmar, A. Foucaran, F. Pascal-Delannoy, Sensor. Actuat. A-Phys. 122 (2005) 184‒188. Crossref

(12). A. Wittmar, D. Gautam, C. Schilling, U. Dörfler, W. Mayer-Zaika, M. Winterer, M. Ulbricht, J. Nanopart. Res. 16 (2014) 2341. Crossref

(13). J. Nishino, Y. Nosaka, J. Cryst. Growth 268 (2004) 174‒177. Crossref

(14). X.H. Wang, L.Q. Huang, L.J. Niu, R.B. Li, D.H.Fan, F.B. Zhang, Z.W. Chen, X. Wang, Q.X. Guo, J. Alloy. Compd. 622 (2015) 440‒445. Crossref

(15). A. El Mragui, I. Daou, O. Zegaoui, Catal. Today 321‒322 (2018) 41‒51. Crossref

(16). Y. Kokubun, H. Kimura, S. Nakagomi, Jpn. J. Appl. Phys. 42 (2003) L904‒L906. Crossref

(17). T.S. Perundevi, A. Karthika, S. Ramalakshmi Mater. Today: Proc., 2021. Crossref

(18). M.H. Farooq, R. Hussain, M.Z. Iqbal, M.W. Shah, U.A. Rana, S.U-D. Khan, J. Nanosci. Nanotechno. 16 (2016) 898‒902. Crossref

(19). R. Zakerian, S. Bahar, J. Sep. Sci. 40 (2017) 4439‒4445. Crossref

(20). D. Dimova-Malnovska, P. Andreev, M. Sendova-Vassileva, H. Nichev, K. Starbova, Energy Procedia 2 (2010) 55‒58. Crossref

(21). H. Haga, M. Jinnai, S. Ogawa, T. Kuroda, Y. Kato, H. Ishizaki, Electr. Eng. Japan 140 (2021) 357‒363. Crossref

(22). R. Sang, Y. Zhang, J. Shao, C. Yan, K. Zhao, J. Alloy. Compd. 777 (2019) 506‒513. Crossref

(23). T. Wen, H. Tan, S. Chen, P. He, S. Yang, C. Deng, S. Liu, Electrochem. Commun. 128 (2021) 107073. Crossref

(24). Y.-L. Xie, J. Yuan, P Song, S-Q. Hu, J. Mater. Sci: Mater. Electron. 26 (2015) 3868‒3873. Crossref

(25). J. Chen, Y. Jia, W. Wang, J. Fu, H. Shi, Y. Liang, Int. J. Hydrogen Energ. 45 (2020) 8649‒8658. Crossref

(26). M. Yousefi, M. Amiri, R. Azimirad, A.Z. Moshfeghad, J. Electroanal. Chem. 661 (2011) 106‒112. Crossref

(27). X. Gan, X. Li, X. Gao, W. Yu, J. Alloy. Compd. 481 (2009) 397‒401. Crossref

(28). P.C. Pandey, A.K. Pandey, Electrochim. Acta 109 (2013) 536‒545. Crossref

(29). J.M. Monti, D. Monti, Sleep Med. Rev. 11 (2007) 113‒133. Crossref

(30). T.S. Tang, X. Chen, J. Liu, I. Bezprozvanny, J. Neurosci. 27 (2007) 7899‒7910. Crossref

(31). M.K. Lakshmana, T.R. Raju, Anal. Biochem. 246 (1997) 166‒170. Crossref

(32). O. Szerkus, J. Jacyna, P. Wiczling, A. Gibas, M. Sieczkowski, D. Siluk, M. Matuszewski, R. Kaliszana, M.J. Markuszewskia, J. Chromatogr. B 1029‒1030 (2016) 48‒59. Crossref

(33). Y. Liu, X. Huang, J. Ren, Electrophoresis 37 (2016) 2‒18. Crossref

(34). J. Yang, Y. Lin, Y. Meng, Y. Liu, Ceram. Int. 38 (2012) 4555‒4559. Crossref

(35). M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 3 (2010) 2643‒2667. Crossref

(36). P.Y. Kuang, Y.Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, J. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 16387–16394. Crossref

Published
2021-12-31
How to Cite
[1]
J. Sun, J. Cao, and X. Jiang, “Study on the Rapid Preparation of Zinc Oxide Nanotubes by Galvanostatic Etching”, Eurasian Chem.-Technol. J., vol. 23, no. 4, p. 247‒255, Dec. 2021.
Section
Articles