PCL Based CIP-Loaded Double-Layer Films Deposited by Low-Electron Beam Dispersion Method and its Antibacterial Properties
DOI:
https://doi.org/10.18321/ectj997Keywords:
Low-electron beam dispersion, Polycaprolactone, Polyurethane, Ciprofloxacin, Antibacterial activity, Drug releaseAbstract
In this paper, low-electron beam dispersion (EBD) method is used to prepare a kind of double-layer films on different substrates. The bottom layer is a mechanically stirred mixture of the degradable polycaprolactone (PCL) and ciprofloxacin (CIP), and the top layer is polyurethane (PU) film. The molecular structure, chemical composition and morphology of the double-layer films were investigated by FTIR, XPS and SEM. The results showed that the surfaces of the double-layer films are uniform and the thicknesses can reach micron level. In addition, the two layers are well bonded. Then the films were sliced and immersed in PBS solution, and the time-dependent variable was used to analyze the kinetic slow-release behavior of CIP in the double-layer films by agar diffusion antibacterial experiments. It can be seen that sustained release time of CIP in the double-layer films can be up to 7 days, which is due to fact that the upper PU film working as a sealing layer helps to realize the drug slow-release. Based on the above research, the comprehensive performance of the films with the composition of PCL:CIP/PU=1:1/1 is the best.
References
(1). Y.-K. Wu, N.-C. Cheng, C.-M. Cheng, Trends Biotechnol. 37 (2019) 505–517. Crossref DOI: https://doi.org/10.1016/j.tibtech.2018.10.011
(2). A.J.T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, ACS Biomater. Sci. Eng. 2 (2016) 454–472. Crossref DOI: https://doi.org/10.1021/acsbiomaterials.5b00429
(3). H.O. Gbejuade, A.M. Lovering, J.C. Webb, Acta Orthop. 86 (2015) 147–158. Crossref DOI: https://doi.org/10.3109/17453674.2014.966290
(4). S.A. Al-Trawneh, J.A. Zahra, M.R. Kamal, M.M.El-Abadelah, F. Zani, M. Incerti, A. Cavazzoni,R.R. Alferi, P.G. Petronini, P. Vicini, Bioorg. Med. Chem. 18 (2016) 5873–5884. Crossref DOI: https://doi.org/10.1016/j.bmc.2010.06.098
(5). P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173‒1182. Crossref DOI: https://doi.org/10.1016/j.foodchem.2008.11.047
(6). M. Labet, W. Thielemans, Chem. Soc. Rev. 38 (2009) 3484–3504. Crossref DOI: https://doi.org/10.1039/b820162p
(7). H.Y. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.-S. Lee, J.-S. Oh, T. Akaike, C.- S. Cho, Biomaterials 24 (2003) 801–808. Crossref DOI: https://doi.org/10.1016/S0142-9612(02)00370-8
(8). L. Averous, L. Moro, P. Dole, C. Fringant, Polymer 41 (2000) 4157–4167. Crossref DOI: https://doi.org/10.1016/S0032-3861(99)00636-9
(9). J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26 (2005) 4817– 4827. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2004.11.057
(10). J.M.H. Kuijpens, G.A. Kardaun, R. Blezer, A.P. Pijpers, L.H. Koole, J. Am. Chem. Soc. 117 (1995) 8691–8697. Crossref DOI: https://doi.org/10.1021/ja00139a001
(11). B. Li, C. He, X. Jiang, M.A. Yarmolenko, D.G. Piliptsou, A.A. Rogachev, A.V. Rogachev, B. Du, Eurasian Chem.-Technol. J. 22 (2020) 35‒42. Crossref DOI: https://doi.org/10.18321/ectj928
(12). C. He, A.V. Rogacheva, B. Li, V.A. Yarmolenko, A.A. Rogacheva, D.V. Tapal’skii, X. Jiang, D. Sun, M.A. Yarmolenko, Surf. Coat. Tech. 354 (2018) 38–45. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2018.09.013
(13). L.I. Beibei, H.E. Chun, J. Xiaohong, M.A. Yrmolenko, D.G. Piliptsou, A.A. Rogahev, Journal of Nanjing Tech University (Natural Science Edition) 42 (2020) 743–750 (in Chinese). Crossref
(14). G. Ajmal, G.V. Bonde, P. Mittal, G. Khan, V.K. Pandey, B.V. Bakade, B. Mishra, Int. J. Pharmaceut. 567 (2019) 118480. Crossref DOI: https://doi.org/10.1016/j.ijpharm.2019.118480
(15). B. Feng, T. Ji, X. Wang, W. Fu, L. Ye, H. Zhang, F. Li, Mater. Design 193 (2020) 108773. Crossref DOI: https://doi.org/10.1016/j.matdes.2020.108773
(16). S. Mohandesnezhad, Y. Pilehvar-Soltanahmadi, E. Alizadeh, A. Goodarzi, S. Davaran, M. Khatamian, N. Zarghami, M. Samiei, M. Aghazadeh, A. Akbarzadeh, Mater. Chem. Phys. 5 (2020) 123152. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2020.123152
(17). P. Demir, F. Akman, J. Mol. Struct. 1134 (2017) 404‒415. Crossref DOI: https://doi.org/10.1016/j.molstruc.2016.12.101
(18). S. Xu, X. Li, G. Sui, R. Du, Q. Zhang, Q. Fu, Chem. Eng. J. 381 (2020) 122666. Crossref DOI: https://doi.org/10.1016/j.cej.2019.122666
(19). M.A. Parker, D. Vesely, J. Polym. Sci. Pol. Phys. 24 (1986) 1869‒1878. Crossref DOI: https://doi.org/10.1002/polb.1986.090240821
(20). Y. Fei, Y. Li, S. Han, J. Ma, J. Colloid Interf. Sci. 484 (2016) 196‒204. Crossref DOI: https://doi.org/10.1016/j.jcis.2016.08.068
(21). S. Park, S. Jung, J. Heo, J. Hong, J. Ind. Eng. Chem. 77 (2019) 97‒104. Crossref DOI: https://doi.org/10.1016/j.jiec.2019.04.023
(22). B. Li, Y. Liu, A.V. Rogachev, V.A. Yarmolenko, A.A. Rogachev, A.E. Pyzh, X. Jiang, M.A. Yarmolenko, Mat. Sci. Eng. C-Mater. 110 (2020) 110730. Crossref DOI: https://doi.org/10.1016/j.msec.2020.110730
(23). I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, E. Fazio, L. D’Urso, Mendeleev Commun. 30 (2020) 285–287. Crossref DOI: https://doi.org/10.1016/j.mencom.2020.05.007
(24). C. Zhi, Z.-yu Long, A. Manikowski, J. Comstock, W.-C. Xu, N.C. Brown, P.M. Tarantino, K.A. Holm, E.J. Dix, G.E. Wright, M.H. Barnes, M.M. Butler, K.A. Foster, W.A. LaMarr, B. Bachand, R. Bethell, C. Cadilhac, S. Charron, S. Lamothe, I. Motorina, R. Storer, J. Med. Chem. 49 (2006) 1455–1465. Crossref DOI: https://doi.org/10.1021/jm0510023
(25). X. Li, Y.-K. Zhang, J.J. Plattner, W. Mao, M.R.K. Alley, Yi Xia, V. Hernandez, Y. Zhou, C.Z. Ding, J. Li, Z. Shao, H. Zhang, M. Xu, Bioorg. Med. Chem. Lett. 23 (2013) 963–966. Crossref DOI: https://doi.org/10.1016/j.bmcl.2012.12.045