PCL Based CIP-Loaded Double-Layer Films Deposited by Low-Electron Beam Dispersion Method and its Antibacterial Properties

  • Qin Xu International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • Beibei Li International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • Zhengwei Xu International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • Xiaohong Jiang International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei str., Nanjing 210094, China
  • M.A. Yarmolenko Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • A.A. Rogachev Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
  • A.V. Rogachev Francisk Skorina Gomel State University, 104, Sovetskaya str., Gomel 246019, Belarus
Keywords: Low-electron beam dispersion, Polycaprolactone, Polyurethane, Ciprofloxacin, Antibacterial activity, Drug release

Abstract

In this paper, low-electron beam dispersion (EBD) method is used to prepare a kind of double-layer films on different substrates. The bottom layer is a mechanically stirred mixture of the degradable polycaprolactone (PCL) and ciprofloxacin (CIP), and the top layer is polyurethane (PU) film. The molecular structure, chemical composition and morphology of the double-layer films were investigated by FTIR, XPS and SEM. The results showed that the surfaces of the double-layer films are uniform and the thicknesses can reach micron level. In addition, the two layers are well bonded. Then the films were sliced and immersed in PBS solution, and the time-dependent variable was used to analyze the kinetic slow-release behavior of CIP in the double-layer films by agar diffusion antibacterial experiments. It can be seen that sustained release time of CIP in the double-layer films can be up to 7 days, which is due to fact that the upper PU film working as a sealing layer helps to realize the drug slow-release. Based on the above research, the comprehensive performance of the films with the composition of PCL:CIP/PU=1:1/1 is the best.

References

(1). Y.-K. Wu, N.-C. Cheng, C.-M. Cheng, Trends Biotechnol. 37 (2019) 505–517. Crossref

(2). A.J.T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, ACS Biomater. Sci. Eng. 2 (2016) 454–472. Crossref

(3). H.O. Gbejuade, A.M. Lovering, J.C. Webb, Acta Orthop. 86 (2015) 147–158. Crossref

(4). S.A. Al-Trawneh, J.A. Zahra, M.R. Kamal, M.M.El-Abadelah, F. Zani, M. Incerti, A. Cavazzoni,R.R. Alferi, P.G. Petronini, P. Vicini, Bioorg. Med. Chem. 18 (2016) 5873–5884. Crossref

(5). P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173‒1182. Crossref

(6). M. Labet, W. Thielemans, Chem. Soc. Rev. 38 (2009) 3484–3504. Crossref

(7). H.Y. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.-S. Lee, J.-S. Oh, T. Akaike, C.- S. Cho, Biomaterials 24 (2003) 801–808. Crossref

(8). L. Averous, L. Moro, P. Dole, C. Fringant, Polymer 41 (2000) 4157–4167. Crossref

(9). J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26 (2005) 4817– 4827. Crossref

(10). J.M.H. Kuijpens, G.A. Kardaun, R. Blezer, A.P. Pijpers, L.H. Koole, J. Am. Chem. Soc. 117 (1995) 8691–8697. Crossref

(11). B. Li, C. He, X. Jiang, M.A. Yarmolenko, D.G. Piliptsou, A.A. Rogachev, A.V. Rogachev, B. Du, Eurasian Chem.-Technol. J. 22 (2020) 35‒42. Crossref

(12). C. He, A.V. Rogacheva, B. Li, V.A. Yarmolenko, A.A. Rogacheva, D.V. Tapal’skii, X. Jiang, D. Sun, M.A. Yarmolenko, Surf. Coat. Tech. 354 (2018) 38–45. Crossref

(13). L.I. Beibei, H.E. Chun, J. Xiaohong, M.A. Yrmolenko, D.G. Piliptsou, A.A. Rogahev, Journal of Nanjing Tech University (Natural Science Edition) 42 (2020) 743–750 (in Chinese). Crossref

(14). G. Ajmal, G.V. Bonde, P. Mittal, G. Khan, V.K. Pandey, B.V. Bakade, B. Mishra, Int. J. Pharmaceut. 567 (2019) 118480. Crossref

(15). B. Feng, T. Ji, X. Wang, W. Fu, L. Ye, H. Zhang, F. Li, Mater. Design 193 (2020) 108773. Crossref

(16). S. Mohandesnezhad, Y. Pilehvar-Soltanahmadi, E. Alizadeh, A. Goodarzi, S. Davaran, M. Khatamian, N. Zarghami, M. Samiei, M. Aghazadeh, A. Akbarzadeh, Mater. Chem. Phys. 5 (2020) 123152. Crossref

(17). P. Demir, F. Akman, J. Mol. Struct. 1134 (2017) 404‒415. Crossref

(18). S. Xu, X. Li, G. Sui, R. Du, Q. Zhang, Q. Fu, Chem. Eng. J. 381 (2020) 122666. Crossref

(19). M.A. Parker, D. Vesely, J. Polym. Sci. Pol. Phys. 24 (1986) 1869‒1878. Crossref

(20). Y. Fei, Y. Li, S. Han, J. Ma, J. Colloid Interf. Sci. 484 (2016) 196‒204. Crossref

(21). S. Park, S. Jung, J. Heo, J. Hong, J. Ind. Eng. Chem. 77 (2019) 97‒104. Crossref

(22). B. Li, Y. Liu, A.V. Rogachev, V.A. Yarmolenko, A.A. Rogachev, A.E. Pyzh, X. Jiang, M.A. Yarmolenko, Mat. Sci. Eng. C-Mater. 110 (2020) 110730. Crossref

(23). I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, E. Fazio, L. D’Urso, Mendeleev Commun. 30 (2020) 285–287. Crossref

(24). C. Zhi, Z.-yu Long, A. Manikowski, J. Comstock, W.-C. Xu, N.C. Brown, P.M. Tarantino, K.A. Holm, E.J. Dix, G.E. Wright, M.H. Barnes, M.M. Butler, K.A. Foster, W.A. LaMarr, B. Bachand, R. Bethell, C. Cadilhac, S. Charron, S. Lamothe, I. Motorina, R. Storer, J. Med. Chem. 49 (2006) 1455–1465. Crossref

(25). X. Li, Y.-K. Zhang, J.J. Plattner, W. Mao, M.R.K. Alley, Yi Xia, V. Hernandez, Y. Zhou, C.Z. Ding, J. Li, Z. Shao, H. Zhang, M. Xu, Bioorg. Med. Chem. Lett. 23 (2013) 963–966. Crossref

Published
2020-12-28
How to Cite
[1]
Q. Xu, “PCL Based CIP-Loaded Double-Layer Films Deposited by Low-Electron Beam Dispersion Method and its Antibacterial Properties”, Eurasian Chem.-Technol. J., vol. 22, no. 4, p. 255‒262, Dec. 2020.
Section
Articles