PCL Based CIP-Loaded Double-Layer Films Deposited by Low-Electron Beam Dispersion Method and its Antibacterial Properties
DOI:
https://doi.org/10.18321/ectj997Keywords:
Low-electron beam dispersion, Polycaprolactone, Polyurethane, Ciprofloxacin, Antibacterial activity, Drug releaseAbstract
In this paper, low-electron beam dispersion (EBD) method is used to prepare a kind of double-layer films on different substrates. The bottom layer is a mechanically stirred mixture of the degradable polycaprolactone (PCL) and ciprofloxacin (CIP), and the top layer is polyurethane (PU) film. The molecular structure, chemical composition and morphology of the double-layer films were investigated by FTIR, XPS and SEM. The results showed that the surfaces of the double-layer films are uniform and the thicknesses can reach micron level. In addition, the two layers are well bonded. Then the films were sliced and immersed in PBS solution, and the time-dependent variable was used to analyze the kinetic slow-release behavior of CIP in the double-layer films by agar diffusion antibacterial experiments. It can be seen that sustained release time of CIP in the double-layer films can be up to 7 days, which is due to fact that the upper PU film working as a sealing layer helps to realize the drug slow-release. Based on the above research, the comprehensive performance of the films with the composition of PCL:CIP/PU=1:1/1 is the best.
References
(1). Y.-K. Wu, N.-C. Cheng, C.-M. Cheng, Trends Biotechnol. 37 (2019) 505–517. Crossref
(2). A.J.T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, ACS Biomater. Sci. Eng. 2 (2016) 454–472. Crossref
(3). H.O. Gbejuade, A.M. Lovering, J.C. Webb, Acta Orthop. 86 (2015) 147–158. Crossref
(4). S.A. Al-Trawneh, J.A. Zahra, M.R. Kamal, M.M.El-Abadelah, F. Zani, M. Incerti, A. Cavazzoni,R.R. Alferi, P.G. Petronini, P. Vicini, Bioorg. Med. Chem. 18 (2016) 5873–5884. Crossref
(5). P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173‒1182. Crossref
(6). M. Labet, W. Thielemans, Chem. Soc. Rev. 38 (2009) 3484–3504. Crossref
(7). H.Y. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.-S. Lee, J.-S. Oh, T. Akaike, C.- S. Cho, Biomaterials 24 (2003) 801–808. Crossref
(8). L. Averous, L. Moro, P. Dole, C. Fringant, Polymer 41 (2000) 4157–4167. Crossref
(9). J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26 (2005) 4817– 4827. Crossref
(10). J.M.H. Kuijpens, G.A. Kardaun, R. Blezer, A.P. Pijpers, L.H. Koole, J. Am. Chem. Soc. 117 (1995) 8691–8697. Crossref
(11). B. Li, C. He, X. Jiang, M.A. Yarmolenko, D.G. Piliptsou, A.A. Rogachev, A.V. Rogachev, B. Du, Eurasian Chem.-Technol. J. 22 (2020) 35‒42. Crossref
(12). C. He, A.V. Rogacheva, B. Li, V.A. Yarmolenko, A.A. Rogacheva, D.V. Tapal’skii, X. Jiang, D. Sun, M.A. Yarmolenko, Surf. Coat. Tech. 354 (2018) 38–45. Crossref
(13). L.I. Beibei, H.E. Chun, J. Xiaohong, M.A. Yrmolenko, D.G. Piliptsou, A.A. Rogahev, Journal of Nanjing Tech University (Natural Science Edition) 42 (2020) 743–750 (in Chinese). Crossref
(14). G. Ajmal, G.V. Bonde, P. Mittal, G. Khan, V.K. Pandey, B.V. Bakade, B. Mishra, Int. J. Pharmaceut. 567 (2019) 118480. Crossref
(15). B. Feng, T. Ji, X. Wang, W. Fu, L. Ye, H. Zhang, F. Li, Mater. Design 193 (2020) 108773. Crossref
(16). S. Mohandesnezhad, Y. Pilehvar-Soltanahmadi, E. Alizadeh, A. Goodarzi, S. Davaran, M. Khatamian, N. Zarghami, M. Samiei, M. Aghazadeh, A. Akbarzadeh, Mater. Chem. Phys. 5 (2020) 123152. Crossref
(17). P. Demir, F. Akman, J. Mol. Struct. 1134 (2017) 404‒415. Crossref
(18). S. Xu, X. Li, G. Sui, R. Du, Q. Zhang, Q. Fu, Chem. Eng. J. 381 (2020) 122666. Crossref
(19). M.A. Parker, D. Vesely, J. Polym. Sci. Pol. Phys. 24 (1986) 1869‒1878. Crossref
(20). Y. Fei, Y. Li, S. Han, J. Ma, J. Colloid Interf. Sci. 484 (2016) 196‒204. Crossref
(21). S. Park, S. Jung, J. Heo, J. Hong, J. Ind. Eng. Chem. 77 (2019) 97‒104. Crossref
(22). B. Li, Y. Liu, A.V. Rogachev, V.A. Yarmolenko, A.A. Rogachev, A.E. Pyzh, X. Jiang, M.A. Yarmolenko, Mat. Sci. Eng. C-Mater. 110 (2020) 110730. Crossref
(23). I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, E. Fazio, L. D’Urso, Mendeleev Commun. 30 (2020) 285–287. Crossref
(24). C. Zhi, Z.-yu Long, A. Manikowski, J. Comstock, W.-C. Xu, N.C. Brown, P.M. Tarantino, K.A. Holm, E.J. Dix, G.E. Wright, M.H. Barnes, M.M. Butler, K.A. Foster, W.A. LaMarr, B. Bachand, R. Bethell, C. Cadilhac, S. Charron, S. Lamothe, I. Motorina, R. Storer, J. Med. Chem. 49 (2006) 1455–1465. Crossref
(25). X. Li, Y.-K. Zhang, J.J. Plattner, W. Mao, M.R.K. Alley, Yi Xia, V. Hernandez, Y. Zhou, C.Z. Ding, J. Li, Z. Shao, H. Zhang, M. Xu, Bioorg. Med. Chem. Lett. 23 (2013) 963–966. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.