In vitro Biomineralization Ability of Magnesium-Doped Coral Hydroxyapatite Coating Prepared by Pulsed Laser Deposition

Authors

  • Xiaoxue Tan International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
  • Peng Xue The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China
  • Hao Chen The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China
  • Xin Liu The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China
  • M.A. Yarmolenko International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya street, Gomel 246019, Belarus
  • Shangzhe Jiang British School of Nanjing, 16 Han Fu Lu, Jiangning, Nanjing 211106, China
  • Xiaohong Jiang International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China

DOI:

https://doi.org/10.18321/ectj1612

Keywords:

pulsed laser deposition , coral hydroxyapatite , magnesium , pore structure , mineralization in vitro

Abstract

Coral hydroxyapatite (CHA) is a calcium phosphate that has a similar inorganic composition to human bone and the porous structure of coral stone. Due to its interconnected network like pore structure, it can serve as a framework for bone conduction. In this study, CHA films and Mg-CHA films were deposited on titanium and silicon substrates by Pulsed laser deposition, and then the films were heat treated respectively. Studies on the adhesion of the coating showed that the heat-treated Mg-CHA film adhered better to the titanium substrate. The experimental study on biomineralization in vitro showed that a small amount of porous structure appeared in the heat-treated Mg-CHA after immersion in SBF for three days, and the porous structure was visible after immersion for seven days. After 14 days, a new apatite layer formed on the surface. This suggested that magnesium undergoes chemical corrosion in SBF, leading to rapid ion exchange, which results in the formation of porous structures and promotes the development of an apatite-like layer. In summary, the heat-treated Mg-CHA films had superior biomineralization properties.

References

(1). N. Xue, X. Ding, R. Huang, R. Jiang, et al., Pharmaceuticals 15 (2022) 879. Crossref DOI: https://doi.org/10.3390/ph15070879

(2). Y. Wang, H. Zhang, Y. Hu, Y. Jing, et al., Adv. Funct. Mater. 32 (2022) 2208639. Crossref DOI: https://doi.org/10.1002/adfm.202208639

(3). D. Wang, Y. Liu, Y. Liu, L. Yan, et al., J. Biomed. Mater. Res. A 107 (2019) 2360–2370. Crossref DOI: https://doi.org/10.1002/jbm.a.36744

(4). Y. Xia, H. Wang, Y. Li, C. Fu, Front. Mater. 9 (2022) 929618. Crossref DOI: https://doi.org/10.3389/fmats.2022.929618

(5). S. Akyol, B.B. Nissan, I. Karacan, M. Yetmez, et al., J. Aust. Ceram. Soc. 55 (2019) 893–901. Crossref DOI: https://doi.org/10.1007/s41779-018-00304-4

(6). Ch. Daulbayev, G. Mitchell, A. Zakhidov, F. Sultanov, et al., Eurasian Chem.-Technol. J. 20 (2018) 119–124. Crossref DOI: https://doi.org/10.18321/ectj690

(7). Y. Xu, D. Wang, L. Yang, H. Tang, Mater. Charact. 47 (2001) 83–87. Crossref DOI: https://doi.org/10.1016/S1044-5803(01)00154-1

(8). S.K. Nandi, B. Kundu, J. Mukherjee, A. Mahato, et al., Mater. Sci. Eng. C 49 (2015) 816–823. Crossref DOI: https://doi.org/10.1016/j.msec.2015.01.078

(9). Y. Zhang, Q.-S. Yin, Y. Zhang, H. Xia, et al., J. Mater. Sci. Mater. Med. 21 (2010) 2453–2462. Crossref DOI: https://doi.org/10.1007/s10856-010-4101-x

(10). C. Daulbayev, F. Sultanov, A.V. Korobeinyk, M. Yeleuov, et al., Surfaces and Interfaces 28 (2022) 101683. Crossref DOI: https://doi.org/10.1016/j.surfin.2021.101683

(11). H. Zhang, Y. Zhou, N. Yu, H. Ma, et al., Acta Biomater. 91 (2019) 82–98. Crossref DOI: https://doi.org/10.1016/j.actbio.2019.04.024

(12). T.E. Grenga, J.E. Zins, T.W. Bauer, The Rate of Vascularization of Coralline Hydroxyapatite, Plastic and Reconstructive Surgery 84 (1989) 245– 249. Crossref DOI: https://doi.org/10.1097/00006534-198908000-00009

(13). S. Siswanto, D. Hikmawati, U. Kulsum, D.I. Rudyardjo, et al., Open Chem. 18 (2020) 584–590. Crossref DOI: https://doi.org/10.1515/chem-2020-0080

(14). N.C. Köseoğlu, A. Büyükaksoy, M.H. Aslan, A.Y. Oral, Mater. Sci. Tech. 25 (2009) 799–804. Crossref DOI: https://doi.org/10.1179/174328408X353787

(15). W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, et al., J. Mol. Struct. 977 (2010) 145–152. Crossref DOI: https://doi.org/10.1016/j.molstruc.2010.05.025

(16). Y.-C. Liu, Y.-T. Lee, T.-C. Huang, G.-S. Lin, et al., ACS Appl. Bio Mater. 4 (2021) 2523–2533. Crossref DOI: https://doi.org/10.1021/acsabm.0c01535

(17). L. Cao, I. Ullah, N. Li, S. Niu, et al., J. Mater. Sci. Technol. 35 (2019) 719–726. Crossref DOI: https://doi.org/10.1016/j.jmst.2018.10.020

(18). B. Bita, E. Stancu, D. Stroe, M. Dumitrache, et al., Polymers 14 (2022) 582. Crossref DOI: https://doi.org/10.3390/polym14030582

(19). N. Kanasan, S. Adzila, C.T. Koh, H.A. Rahman, G. Panerselvan, Adv. Appl. Ceram. 118 (2019) 381– 386. Crossref DOI: https://doi.org/10.1080/17436753.2019.1611983

(20). D. Predoi, S.L. Iconaru, M.V. Predoi, M. Motelica- Heino, et al., Coatings 10 (2020) 510. Crossref DOI: https://doi.org/10.3390/coatings10060510

(21). F. Ren, Y. Leng, R. Xin, X. Ge, Acta Biomater. 6 (2010) 2787–2796. Crossref DOI: https://doi.org/10.1016/j.actbio.2009.12.044

(22). N.V. Bulina, O.B. Vinokurova, I.Yu. Prosanov, A.M. Vorobyev, et al., Ceram. Int. 48 (2022) 35217– 35226. Crossref DOI: https://doi.org/10.1016/j.ceramint.2022.08.123

(23). J.-Y. Wang, Y.-C. Liu, G.-S. Lin, H.-H. Chang, et al., Surf. Coat. Tech. 386 (2020) 125452. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2020.125452

(24). S. Iconaru, A. Prodan, N. Buton, D. Predoi, Molecules 22 (2017) 604. Crossref DOI: https://doi.org/10.3390/molecules22040604

(25). R.T. Candidato, C. Thouzellier, L. Pawłowski, J. Biomed. Mater. Res. 106 (2018) 2101–2108. Crossref DOI: https://doi.org/10.1002/jbm.b.34014

(26). S. Singh, K.K. Pandey, A.K. Keshri, Met. Mater. Int. 27 (2021) 4455–4462. Crossref DOI: https://doi.org/10.1007/s12540-020-00704-x

(27). M. Ohki, S. Takahashi, R. Jinnai, T. Hoshina, J. Therm. Spray Tech. 29 (2020) 1119–1133. Crossref DOI: https://doi.org/10.1007/s11666-020-01041-6

(28). U.R. Eckstein, R. Detsch, N.H. Khansur, M. Brehl, et al., Ceram. Int. 45 (2019) 14728–14732. Crossref DOI: https://doi.org/10.1016/j.ceramint.2019.04.197

(29). M. Maximov, O.-C. Maximov, L. Craciun, D. Ficai, et al., Coatings 11 (2021) 1386. Crossref DOI: https://doi.org/10.3390/coatings11111386

(30). Q. Bao, C. Chen, D. Wang, J. Liu, Cryst. Growth Des. 8 (2008) 219–223. Crossref DOI: https://doi.org/10.1021/cg070151e

(31). A. Rezaei, R.B. Golenji, F. Alipour, M.M. Hadavi, et al., Ceram. Int. 46 (2020) 25374–25381. Crossref DOI: https://doi.org/10.1016/j.ceramint.2020.07.005

(32). Y. Su, D. Li, Y. Su, C. Lu, et al., ACS Biomater. Sci. Eng. 2 (2016) 818–828. Crossref DOI: https://doi.org/10.1021/acsbiomaterials.6b00013

(33). Z. Chen, J. Zhai, D. Wang, C. Chen, Ceram. Int. 44 (2018) 10204–10209. Crossref DOI: https://doi.org/10.1016/j.ceramint.2018.03.013

(34). J. Cao, X. Liu, X. Jiang, R. Lian, et al., Appl. Surf. Sci. 565 (2021) 150598. Crossref DOI: https://doi.org/10.1016/j.apsusc.2021.150598

(35). S. Johnson, M. Haluska, R.J. Narayan, R.L. Snyder, Mater. Sci. Eng. C 26 (2006) 1312–1316. Crossref DOI: https://doi.org/10.1016/j.msec.2005.08.023

(36). N. Ohtsu, S. Hiromoto, M. Yamane, K. Satoh, et al., Surf. Coat. Tech. 218 (2013) 114–118. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2012.12.037

(37). J. Weng, Biomaterials 18 (1997) 1027–1035. Crossref DOI: https://doi.org/10.1016/S0142-9612(97)00022-7

Downloads

Published

27-06-2024

How to Cite

Tan, X., Xue, P., Chen, H., Liu, X., Yarmolenko, M., Jiang, S., & Jiang, X. (2024). In vitro Biomineralization Ability of Magnesium-Doped Coral Hydroxyapatite Coating Prepared by Pulsed Laser Deposition . Eurasian Chemico-Technological Journal, 26(2), 93–103. https://doi.org/10.18321/ectj1612

Issue

Section

Articles