In vitro Biomineralization Ability of Magnesium-Doped Coral Hydroxyapatite Coating Prepared by Pulsed Laser Deposition
DOI:
https://doi.org/10.18321/ectj1612Keywords:
pulsed laser deposition , coral hydroxyapatite , magnesium , pore structure , mineralization in vitroAbstract
Coral hydroxyapatite (CHA) is a calcium phosphate that has a similar inorganic composition to human bone and the porous structure of coral stone. Due to its interconnected network like pore structure, it can serve as a framework for bone conduction. In this study, CHA films and Mg-CHA films were deposited on titanium and silicon substrates by Pulsed laser deposition, and then the films were heat treated respectively. Studies on the adhesion of the coating showed that the heat-treated Mg-CHA film adhered better to the titanium substrate. The experimental study on biomineralization in vitro showed that a small amount of porous structure appeared in the heat-treated Mg-CHA after immersion in SBF for three days, and the porous structure was visible after immersion for seven days. After 14 days, a new apatite layer formed on the surface. This suggested that magnesium undergoes chemical corrosion in SBF, leading to rapid ion exchange, which results in the formation of porous structures and promotes the development of an apatite-like layer. In summary, the heat-treated Mg-CHA films had superior biomineralization properties.
References
(1). N. Xue, X. Ding, R. Huang, R. Jiang, et al., Pharmaceuticals 15 (2022) 879. Crossref DOI: https://doi.org/10.3390/ph15070879
(2). Y. Wang, H. Zhang, Y. Hu, Y. Jing, et al., Adv. Funct. Mater. 32 (2022) 2208639. Crossref DOI: https://doi.org/10.1002/adfm.202208639
(3). D. Wang, Y. Liu, Y. Liu, L. Yan, et al., J. Biomed. Mater. Res. A 107 (2019) 2360–2370. Crossref DOI: https://doi.org/10.1002/jbm.a.36744
(4). Y. Xia, H. Wang, Y. Li, C. Fu, Front. Mater. 9 (2022) 929618. Crossref DOI: https://doi.org/10.3389/fmats.2022.929618
(5). S. Akyol, B.B. Nissan, I. Karacan, M. Yetmez, et al., J. Aust. Ceram. Soc. 55 (2019) 893–901. Crossref DOI: https://doi.org/10.1007/s41779-018-00304-4
(6). Ch. Daulbayev, G. Mitchell, A. Zakhidov, F. Sultanov, et al., Eurasian Chem.-Technol. J. 20 (2018) 119–124. Crossref DOI: https://doi.org/10.18321/ectj690
(7). Y. Xu, D. Wang, L. Yang, H. Tang, Mater. Charact. 47 (2001) 83–87. Crossref DOI: https://doi.org/10.1016/S1044-5803(01)00154-1
(8). S.K. Nandi, B. Kundu, J. Mukherjee, A. Mahato, et al., Mater. Sci. Eng. C 49 (2015) 816–823. Crossref DOI: https://doi.org/10.1016/j.msec.2015.01.078
(9). Y. Zhang, Q.-S. Yin, Y. Zhang, H. Xia, et al., J. Mater. Sci. Mater. Med. 21 (2010) 2453–2462. Crossref DOI: https://doi.org/10.1007/s10856-010-4101-x
(10). C. Daulbayev, F. Sultanov, A.V. Korobeinyk, M. Yeleuov, et al., Surfaces and Interfaces 28 (2022) 101683. Crossref DOI: https://doi.org/10.1016/j.surfin.2021.101683
(11). H. Zhang, Y. Zhou, N. Yu, H. Ma, et al., Acta Biomater. 91 (2019) 82–98. Crossref DOI: https://doi.org/10.1016/j.actbio.2019.04.024
(12). T.E. Grenga, J.E. Zins, T.W. Bauer, The Rate of Vascularization of Coralline Hydroxyapatite, Plastic and Reconstructive Surgery 84 (1989) 245– 249. Crossref DOI: https://doi.org/10.1097/00006534-198908000-00009
(13). S. Siswanto, D. Hikmawati, U. Kulsum, D.I. Rudyardjo, et al., Open Chem. 18 (2020) 584–590. Crossref DOI: https://doi.org/10.1515/chem-2020-0080
(14). N.C. Köseoğlu, A. Büyükaksoy, M.H. Aslan, A.Y. Oral, Mater. Sci. Tech. 25 (2009) 799–804. Crossref DOI: https://doi.org/10.1179/174328408X353787
(15). W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, et al., J. Mol. Struct. 977 (2010) 145–152. Crossref DOI: https://doi.org/10.1016/j.molstruc.2010.05.025
(16). Y.-C. Liu, Y.-T. Lee, T.-C. Huang, G.-S. Lin, et al., ACS Appl. Bio Mater. 4 (2021) 2523–2533. Crossref DOI: https://doi.org/10.1021/acsabm.0c01535
(17). L. Cao, I. Ullah, N. Li, S. Niu, et al., J. Mater. Sci. Technol. 35 (2019) 719–726. Crossref DOI: https://doi.org/10.1016/j.jmst.2018.10.020
(18). B. Bita, E. Stancu, D. Stroe, M. Dumitrache, et al., Polymers 14 (2022) 582. Crossref DOI: https://doi.org/10.3390/polym14030582
(19). N. Kanasan, S. Adzila, C.T. Koh, H.A. Rahman, G. Panerselvan, Adv. Appl. Ceram. 118 (2019) 381– 386. Crossref DOI: https://doi.org/10.1080/17436753.2019.1611983
(20). D. Predoi, S.L. Iconaru, M.V. Predoi, M. Motelica- Heino, et al., Coatings 10 (2020) 510. Crossref DOI: https://doi.org/10.3390/coatings10060510
(21). F. Ren, Y. Leng, R. Xin, X. Ge, Acta Biomater. 6 (2010) 2787–2796. Crossref DOI: https://doi.org/10.1016/j.actbio.2009.12.044
(22). N.V. Bulina, O.B. Vinokurova, I.Yu. Prosanov, A.M. Vorobyev, et al., Ceram. Int. 48 (2022) 35217– 35226. Crossref DOI: https://doi.org/10.1016/j.ceramint.2022.08.123
(23). J.-Y. Wang, Y.-C. Liu, G.-S. Lin, H.-H. Chang, et al., Surf. Coat. Tech. 386 (2020) 125452. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2020.125452
(24). S. Iconaru, A. Prodan, N. Buton, D. Predoi, Molecules 22 (2017) 604. Crossref DOI: https://doi.org/10.3390/molecules22040604
(25). R.T. Candidato, C. Thouzellier, L. Pawłowski, J. Biomed. Mater. Res. 106 (2018) 2101–2108. Crossref DOI: https://doi.org/10.1002/jbm.b.34014
(26). S. Singh, K.K. Pandey, A.K. Keshri, Met. Mater. Int. 27 (2021) 4455–4462. Crossref DOI: https://doi.org/10.1007/s12540-020-00704-x
(27). M. Ohki, S. Takahashi, R. Jinnai, T. Hoshina, J. Therm. Spray Tech. 29 (2020) 1119–1133. Crossref DOI: https://doi.org/10.1007/s11666-020-01041-6
(28). U.R. Eckstein, R. Detsch, N.H. Khansur, M. Brehl, et al., Ceram. Int. 45 (2019) 14728–14732. Crossref DOI: https://doi.org/10.1016/j.ceramint.2019.04.197
(29). M. Maximov, O.-C. Maximov, L. Craciun, D. Ficai, et al., Coatings 11 (2021) 1386. Crossref DOI: https://doi.org/10.3390/coatings11111386
(30). Q. Bao, C. Chen, D. Wang, J. Liu, Cryst. Growth Des. 8 (2008) 219–223. Crossref DOI: https://doi.org/10.1021/cg070151e
(31). A. Rezaei, R.B. Golenji, F. Alipour, M.M. Hadavi, et al., Ceram. Int. 46 (2020) 25374–25381. Crossref DOI: https://doi.org/10.1016/j.ceramint.2020.07.005
(32). Y. Su, D. Li, Y. Su, C. Lu, et al., ACS Biomater. Sci. Eng. 2 (2016) 818–828. Crossref DOI: https://doi.org/10.1021/acsbiomaterials.6b00013
(33). Z. Chen, J. Zhai, D. Wang, C. Chen, Ceram. Int. 44 (2018) 10204–10209. Crossref DOI: https://doi.org/10.1016/j.ceramint.2018.03.013
(34). J. Cao, X. Liu, X. Jiang, R. Lian, et al., Appl. Surf. Sci. 565 (2021) 150598. Crossref DOI: https://doi.org/10.1016/j.apsusc.2021.150598
(35). S. Johnson, M. Haluska, R.J. Narayan, R.L. Snyder, Mater. Sci. Eng. C 26 (2006) 1312–1316. Crossref DOI: https://doi.org/10.1016/j.msec.2005.08.023
(36). N. Ohtsu, S. Hiromoto, M. Yamane, K. Satoh, et al., Surf. Coat. Tech. 218 (2013) 114–118. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2012.12.037
(37). J. Weng, Biomaterials 18 (1997) 1027–1035. Crossref DOI: https://doi.org/10.1016/S0142-9612(97)00022-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.