Structures and Antibacterial Properties of PLA-based Ciprofloxacin Composite Films Deposited by Low-Electron Beam Dispersion
DOI:
https://doi.org/10.18321/ectj928Keywords:
electron beam dispersion, PLA-based ciprofloxacin films, antibacterial activity, thermal treatmentAbstract
Polylactic acid (PLA)-based ciprofloxacin (Cip) antibacterial films with mass ratio PLA:Cip=1:1 were prepared by low-electron beam dispersion (EBD). The molecular structure, chemical composition and morphology of PLA-based ciprofloxacin antibacterial films were investigated by XPS, FTIR, liquid NMR and SEM. The antibacterial activity of composite films was tested against E. coli ATCC 25922 and S. aureus ATCC 12600 using the agar diffusion method on the solid LB agar medium. XPS and FTIR analysis showed the presence of an antibacterial ingredient in the composite films. Using NMR, it has been shown that the molecular structure of a monolayer of ciprofloxacin is fully consistent with the molecular structure of the initial ciprofloxacin powders. High antibacterial activity of the composite films has been also established and the layers still possess antibacterial activity with regard to S. aureus even after 7 days of leaching in an isotonic solution. The thermal treatment indicates that the composite films can withstand temperatures of 180 °C and keep its structure unchanged.
References
(1). Y.K. Wu, N.C. Cheng, C.M. Cheng, Trends Biotechnol. 37 (2019) 505‒517. Crossref
(2). Y. Qu, D.C. McGiffin, C.E. Kure, B. Ozcelik, H. Thissen, J. Fraser, A.Y. Peleg, J. Heart Lung Transpl. 37 (2019) 134. Crossref
(3). K. Ivanova, A. Bassegoda, T. Tzanov, Antibacterial coatings on medical devices. In: A. Tiwari, (ed.) Handbook of Antimicrobial Coatings. New York: Elsevier, 2018, pp. 487–507. Crossref
(4). Lin Xiao, Bo Wang, Guang Yang, Mario Gauthier, Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. Biomedical Science, Engineering and Technology, Dhanjoo N. Ghista, IntechOpen, (2012) 247‒282. Crossref
(5). H. Arakawa, Y. Shirasaka, M. Haga, T. Nakanishi, I. Tamai, Biopharm. Drug Dispos. 33 (2012) 332‒341. Crossref
(6). S.A. Al-Trawneh, J.A. Zahra, M.R. Kamal, M.M. El-Abadelah, F. Zani, M. Incerti, A. Cavazzoni, R.R. Alfieri, P.G. Petronini, P. Vicini, Bioorg. Med. Chem. 18 (2010) 5873‒5884. Crossref
(7). N. Blanchemain, Y. Karrout, N. Tabary, M. Bria, C. Neut, H.F. Hildebrand, J. Siepmann, B. Martel, Carbohydr. Polym. 90 (2012) 1695‒1703. Crossref
(8). U.A. Shinde, M.S Nagarsenker, Indian J. Pharm. Sci. 71 (2009) 313‒317. Crossref
(9). U.K. Chhalotiya, K.K. Bhatt, D.A. Shah, S.L. Baldania, Sci. Pharm. 78 (2010) 857‒868. Crossref
(10). P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173‒1182. Crossref
(11). J.T. Wolan, G.B. Hoflund, Appl. Surf. Sci. 125 (1998) 251‒258. Crossref
(12). Chen Qi, A.V. Rogachev, D.V. Tapal’skii, M.A. Yarmolenko, A.A. Rogachev, X. Jiang, E.V. Koshanskaya, A.S. Vorontsov, Surf. Coat. Technol. 315 (2017) 350‒358. Crossref
(13). J.G. Sun, A.V. Rogachev, M.A. Yarmolenko, A.A. Rogachev, X. Jiang, D.V. Tapal’skii, D.L. Gorbachev, A.A. Bespal’ko, RSC Adv. 6 (2016) 29220‒29228. Crossref
(14). T.V. Reshetenko, L.B. Avdeeva, A.A. Khassin, G.N. Kustova, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, D.I. Kochubey, Yu.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Appl. Catal. A‒Gen. 268 (2004) 127‒138. Crossref
(15). K. Otsuka, S. Takenaka, H. Ohtsuki, Appl. Catal. A‒Gen. 273 (2004) 113‒124. Crossref
(16). S. Takenaka, Y. Tomikubo, E. Kato, K. Otsuka, Fuel 83 (2004) 47‒57. Crossref
(17). D. Chen, K.O. Christensen, E.O. Fernandez, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229 (2005) 82‒96. Crossref
(18). C. He, A.V. Rogachev, B. Li, V.A. Yarmolenko, A.A. Rogachev, D.V. Tapal’skii, X. Jiang, D. Sun, M.A. Yarmolenko, Surf. Coat. Tech. 354 (2018) 38‒45. Crossref
(19). C. He, Q. Chen, M.A. Yarmolenko, A.A. Rogachev, D.G. Piliptsou, X. Jiang, A.V. Rogachev, Prog. Org. Coat. 123 (2018) 282‒291. Crossref
(20). L.J. Bellamy, The Infra-red Spectra of Complex Molecules. Methuen, London (1954) 323 p.
(21). C.A. Rodrigues, A. Tofanello, I.L. Nantes, D.S. Rosa, ACS Sustain. Chem. Eng. 3 (2015) 2756‒2766. Crossref
(22). D. Doganay, S. Coskun, C. Kaynak, H.E. Unalan, Compos. Part B‒Eng. 99 (2016) 288‒296. Crossref
(23). Yu Fei, Youg Li, Sheng Han, Jie Ma, J. Colloid Interf. Sci. 484 (2016) 196‒204. Crossref
(24). S. Park, S. Jung, J. Heo, J. Hong, J. Ind. Eng. Chem. 77 (2019) 97‒104. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.