High-Performance Mn-Al-O Catalyst on Reticulated Foam Materials for Environmentally Friendly Catalytic Combustion
DOI:
https://doi.org/10.18321/ectj205Abstract
MnOx supported on alumina and La2O3-modified alumina have been prepared and characterized as methane combustion catalysts. X-ray diffraction (XRD) analysis has revealed the significant low-temperature interaction between MnOx and alumina, resulting in a solid solution Mn-La-γ*-Al2O3 and a hexaaluminate formation upon thermal treatment at 900-1000 ºC and 1300 ºC, respectively. Mn-Al-O and Mn-La-Al-O catalysts washcoated on highly porous reticulated foam materials (RFM) have been prepared by two methods, such as: 1) a wet impregnation of a washcoating alumina layer on RFM by Mn and La nitrate solutions, 2) a dip coating of RFM into Mn-La-Al-containing suspension. The chemical compositions of RFM were cordierite, Ni, and NiCr-alloy. The catalytic activity of washcoated RFM in the methane combustion has been compared with one of granulated catalysts. The influence of alumina form (γ-Al2O3, (γ+χ)-Al2O3, α-Al2O3), manganese loading (5 and 10 wt.%), modifying agent (La2O3) on catalytic activity have been studied. Catalytic performances of Mn-Al-O and Mn-La-Al-O catalysts washcoated on RFM and pretreated in methane-containing atmosphere at 1100 ºC have been investigated. The Mn-Al-O catalyst modified by La2O3 and supported on RFM have been tested in a prototype catalytic water heating boiler and demonstrated a considerable reduction in the emissions of NOx and CO compared to the conventional household boilers. The washcoating of the Mn-La-Al-O catalyst over surface of RFM provides a substantial reduction of toxic emissions during the catalytic fuel combustion. While an optimal foam structure and composition of the RFM provide improved heat and mass transfer properties of the catalyst in fuel combustion.
References
D.I. Mendeleeva 29: 379 (1984).
[2]. Z.R. Ismagilov, M.A. Kerzhentsev, Catal. Today 47 (1999) 339–346.
[3]. Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, N.V. Shikina, A.N. Zagoruiko, V.N. Parmon, V.M. Zakharov,
B.I. Braynin, O.N. Favorski,Development of Granular Catalysts and Natural Gas Combustion Technology for Small Gas Turbine Power Plants. In book "Gas Turbines", Ed.: I. Gurrapa, Sciyo, Chapter 4: 79 (2010).
ISBN 978-953-307-146-6.
[4]. S.A. Yashnik, V.V. Kuznetsov, Z.R. Ismagilov, V.V. Ushakov, N.M. Danchenko, S.P. Denisov Topics in Catal. 30/31 (2004) 293–298.
[5]. S.A. Yashnik, Z.R. Ismagilov, A.V. Porsin, S.P. Denisov, N.M. Danchenko, Topics in Catal. 465 (2007) 42–43.
[6]. R.M. Heck, R.J. Farrauto, Catalytic air pollution control. Commercial Technology. New York, VNR, 1995, P.206.
[7]. M.V. Twigg Catal. Today 117 (2006) 407–418.
[8]. R.A. Dalla Betta, Catal. Today 35 (1997) 129–135.
[9]. J.G. McCarty, M. Gusman, D.M. Lowe, D.L. Hildebrand, K.L. Lau, Catal. Today 47 (1999) 5–17.
[10]. R.J. Farrauto, M.C. Hobson, T. Kennelly, E.M. Waterman, Appl. Catal. A 81 (1992) 227–237.
[11]. H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Appl. Catal. 26 (1986) 265–276.
[12]. G. Saracco, F. Geobaldo, G. Baldi, Appl. Catal. B: Environ. 20 (1999) 277–288.
[13]. M. Machida, K. Eguchi, H. Arai, J. Catal. 103 (1987) 385–393.
[14]. M. Machida, K. Eguchi, H. Arai, J. Catal. 120 (1989) 377–386.
[15]. M. Machida, K. Eguchi, H. Arai, Chem. Lett. 767–770 (1987).
[16]. S.A. Yashnik, Z.R. Ismagilov, V.V. Kuznetsov, V.V. Ushakov, V.A. Rogov, I.A. Ovsyannikova, Catal. Today 117 (2006) 525–535.
[17]. F. Laville, D. Gourier, A.M. Lejus, D. Vivien, J. Solid. State Chem. 49 (1983) 180–187.
[18]. Z. Jaworska-Golas, W. Mista, J. Wrzyszсz, Catal. Lett. 24 (1994) 133–139.
[19]. L.T. Tsykoza, Z.R. Ismagilov, V.V. Ushakov, V.V. Kuznetsov, I.A. Ovsyannikova, Kinet. Katal. 44: 879 (2003).
[20]. Russian Application 2185238 (2002) L.T. Tsykoza, S.A. Yashnik, Z.R. Ismagilov. Catalyst for high-temperature combustion of hydrocarbon fuels.
[21]. S.A. Yashnik, Z.R. Ismagilov, Topic Catal. 55 (2012) 818–836.
[22]. P.G. Tsyrulnikov, V.S. Salnikov, V.A. Drozdov,S.A. Stuken, A.V. Bubnov, E.I. Grigorov, A.V. Kalinkin, V.I. Zaikovskii, Kinetics and Catalysis 32 (1191) 439–441.
[23]. Z.R. Ismagilov, V.V. Pushkarev, O.Yu. Podyacheva, N.A. Koryabkina, H. Veringa, Chem. Eng. J. 82 (2001) 355–360.
[24]. O.Yu. Podyacheva, N.V. Shikina, Z.R. Ismagilov, V.A. Ushakov, A.I. Boronin, N.A. Rudina, I.A. Ovsyannikova, S.A. Yashnik, O.P. Solonenko, A.A. Michal'chenko, H. Veringa, Chemistry for Sustainable Development 11 (2003) 233–238.
[25]. V.N. Antsiferov, O.P. Kocheev, A.P. Kunevich, Patent 1640208. The method of galvanoplastic manufacture of the reticulated foam material. Public. 07.04.91 (in Russian).
[26]. A. Leonov, A. Romashko. In book “Cellular Metals and Metal Foaming Technology”, 3rd Int. Seminar «MetFoam 2003» / Ed.: J. Banhart, N. Fleck, Berlin: Verl. MIT Publ. 62 (2003).
[27]. J.S. Church, N.W. Cant, D.L. Trimm, Appl. Catal. A 101 (1993) 105–116.
[28]. R.A. Shkrabina, N.A. Koryabkina, V.A. Ushakov, E.M. Moroz, Z.R. Ismagilov, M. Lausberg, Kinetics and Catalysis 37 (1996) 109–116.
[29]. X-ray Powder Diffraction File JCPDS-ICDD.
[30]. V.V. Ushakov, R.A. Shkrabina, N.A. Koryabkina, Z.R. Ismagilov, Kinetics and Catalysis 38 (1997) 117–123 .
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.